# Operation Strategy of Parking Lots Integrated with PV and Considering Energy Price Tags

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Parking Lots Model Establishment

#### 2.1. Proposed Dynamic Pricing for Energy Storage Devices

_{grid}

_{→EV}is the electricity purchased for EVs from the power grid, ${C}_{grid}^{}$ is the price of power grid energy. E

_{PV}

_{→EV}is the charging energy provided by PV for EVs, and E

_{BS→EV}is the charging energy provided by energy storage for EVs.

#### 2.2. Energy Collaborative Management

#### 2.2.1. PV Power to Charge EVs

_{i}is the energy price tag of ith EV.

#### 2.2.2. PV Power to Charge BS

#### 2.2.3. Discharge of EVs

#### 2.2.4. BS Power to Charge EVs

#### 2.3. Optimization Model

- For each EV:(1) Charge power constraint$$0\le {P}_{t}^{ch}\le {P}_{\mathrm{max}}^{ch}\hspace{1em}\hspace{1em}\forall t\in T$$(2) Discharge power constraint$$0\le {P}_{t}^{dch}\le {P}_{\mathrm{max}}^{dch}\hspace{1em}\hspace{1em}\forall t\in T$$(3) Cannot simultaneously charge and discharge constraints$${P}_{t}^{ch}\times {P}_{t}^{dch}=0\hspace{1em}\hspace{1em}\forall t\in T$$(4) Relationship between SOC and charging power$${S}_{t+1}={S}_{t}+\left({P}_{t}^{ch}\times {\eta}^{ch}-{P}_{t}^{dch}\right)\times \Delta t\hspace{1em}\hspace{1em}\forall t\in T$$(5) Maximum and minimum battery capacity status of EV$${S}^{\mathrm{min}}\le {S}_{t}\le {S}^{\mathrm{max}}\hspace{1em}\hspace{1em}\forall t\in T$$(6) Battery initial capacity state of EV$${S}_{ts}={S}^{ini}$$(7) Battery termination capacity status of EV$${S}_{te}={S}^{fin}$$
- For PV:(1) Power output constraint$$0<{P}_{t}^{\mathrm{pv}}<{P}_{\mathrm{max}}^{\mathrm{pv}}$$
- For BS:(1) Charge/discharge power constraint$$-{P}_{\mathrm{max}}^{BS}<{P}_{t}^{BS}<{P}_{\mathrm{max}}^{BS}$$(2) Maximum and minimum battery capacity status of BS$${S}_{BS}^{\mathrm{min}}\le {S}_{t}^{BS}\le {S}_{BS}^{\mathrm{max}}\hspace{1em}\hspace{1em}\forall t\in T$$
- Power constraint of transformer$${P}_{t}^{grid}\le {P}_{\mathrm{max}}^{grid}$$
- Power balance constraints$${P}_{t}^{BS}+{\displaystyle \sum _{i=1}^{n}({P}_{i,t}^{ch}+{P}_{i,t}^{dch})}+{P}_{t}^{Building}={P}_{t}^{PV}+{P}_{t}^{Grid}$$

#### 2.4. Proposed Parking Lot Charging Scheduling Strategy

## 3. Simulation Results and Discussion

#### 3.1. Parameters Information

#### 3.2. Case Description

#### 3.3. Simulation Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Voelcker, J. How green is my plug-in? IEEE Spectrum
**2009**, 46, 42–58. [Google Scholar] [CrossRef] - Li, Z.; Guo, Q.; Sun, H.; Wang, Y.; Xin, S. Emission-concerned wind-EV coordination on the transmission grid side with network constraints: Concept and case study. IEEE Trans. Smart Grid
**2013**, 4, 1692–1704. [Google Scholar] [CrossRef] - Saber, A.Y.; Venayagamoorthy, G.K. Plug-in vehicles and renewable energy sources for cost and emission reductions. IEEE Trans. Ind. Electron.
**2011**, 58, 1229–1238. [Google Scholar] [CrossRef] - Paterakis, N.G.; Erdinç, O.; Pappi, I.N.; Bakirtzis, A.G.; Catalão, J.P. Coordinated operation of a neighborhood of smart households comprising electric vehicles, energy storage and distributed generation. IEEE Trans. Smart Grid
**2016**, 7, 2736–2747. [Google Scholar] [CrossRef] - Zhang, T.; Pota, H.; Chu, C.-C.; Gadh, R. Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency. Appl. Energy
**2018**, 226, 582–594. [Google Scholar] [CrossRef] - Nunes, P.; Figueiredo, R.; Brito, M.C. The use of parking lots to solar-charge electric vehicles. Renew. Sustain. Energy Rev.
**2016**, 66, 679–693. [Google Scholar] [CrossRef] - Hadley, S.W.; Tsvetkova, A.A. Potential impacts of plug-in hybrid electric vehicles on regional power generation. Electr. J.
**2009**, 22, 56–68. [Google Scholar] [CrossRef] [Green Version] - Kassing, P.; Sumper, A.; Muller, T.; Heiswolf, M. Battery Storage Systems Feasibility Study for Revenue Models in Germany. In Proceedings of the 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 6–9 June 2017. [Google Scholar]
- Rahman, I.; Vasant, P.M.; Singh, B.S.M.; Abdullah-Al-Wadud, M.; Adnan, N. Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renew. Sustain. Energy Rev.
**2016**, 58, 1039–1047. [Google Scholar] [CrossRef] - Awad, A.S.A.; Shaaban, M.; El-Fouly, T.H.M.; El-Saadany, E.F.; Salama, M.M.A. Optimal resource allocation and charging prices for benefit maximization in smart PEV-parking lots. IEEE Trans. Sustain. Energy
**2016**, 8, 906–915. [Google Scholar] [CrossRef] - Zhang, Y.; Cai, L. Dynamic charging scheduling for EV parking lots with photovoltaic power system. IEEE Access
**2018**, 6, 56995–57005. [Google Scholar] [CrossRef] - Zhang, T.; Chen, W.; Han, Z.; Cao, Z. Charging scheduling of electric vehicles with local renewable energy under uncertain electric vehicle arrival and grid power price. IEEE Trans. Veh. Technol.
**2013**, 63, 2600–2612. [Google Scholar] [CrossRef] [Green Version] - Chen, H.; Hu, Z.; Zhang, H.; Luo, H. Coordinated charging and discharging strategies for plug-in electric bus fast charging station with energy storage system. IET Gener. Transm. Distrib.
**2017**, 12, 2019–2028. [Google Scholar] [CrossRef] [Green Version] - Aznavi, S.; Fajri, P.; Asrari, A. Smart Home Energy Management Considering Real-Time Energy Pricing of Plug-in Electric Vehicles. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018. [Google Scholar]
- Yan, D.; Ma, C. Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems. IET Gener. Transm. Distrib.
**2020**, 14, 4217–4224. [Google Scholar] [CrossRef]

Variable | Charging Coefficient | Discharging Coefficient | SOC_{min} | SOC_{max} | P_{ch,max} (kW) | P_{dis,max} (kW) | E (kWh) |
---|---|---|---|---|---|---|---|

Value | 0.99 | 0.99 | 0.2 | 0.9 | 20 | 20 | 100 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, Z.; Huang, X.; Gao, S.; Zhao, Q.; Ding, H.; Gao, T.; Mao, D.; Ye, R.
Operation Strategy of Parking Lots Integrated with PV and Considering Energy Price Tags. *World Electr. Veh. J.* **2021**, *12*, 205.
https://doi.org/10.3390/wevj12040205

**AMA Style**

Yang Z, Huang X, Gao S, Zhao Q, Ding H, Gao T, Mao D, Ye R.
Operation Strategy of Parking Lots Integrated with PV and Considering Energy Price Tags. *World Electric Vehicle Journal*. 2021; 12(4):205.
https://doi.org/10.3390/wevj12040205

**Chicago/Turabian Style**

Yang, Zexin, Xueliang Huang, Shan Gao, Qi Zhao, Hongen Ding, Tian Gao, Dongyu Mao, and Rui Ye.
2021. "Operation Strategy of Parking Lots Integrated with PV and Considering Energy Price Tags" *World Electric Vehicle Journal* 12, no. 4: 205.
https://doi.org/10.3390/wevj12040205