Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = finite-blocklength regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1964 KB  
Article
Minimizing Task Age upon Decision for Low-Latency MEC Networks Task Offloading with Action-Masked Deep Reinforcement Learning
by Zhouxi Jiang, Jianfeng Yang and Xun Gao
Sensors 2024, 24(9), 2812; https://doi.org/10.3390/s24092812 - 28 Apr 2024
Cited by 2 | Viewed by 1463
Abstract
In this paper, we consider a low-latency Mobile Edge Computing (MEC) network where multiple User Equipment (UE) wirelessly reports to a decision-making edge server. At the same time, the transmissions are operated with Finite Blocklength (FBL) codes to achieve low-latency transmission. We introduce [...] Read more.
In this paper, we consider a low-latency Mobile Edge Computing (MEC) network where multiple User Equipment (UE) wirelessly reports to a decision-making edge server. At the same time, the transmissions are operated with Finite Blocklength (FBL) codes to achieve low-latency transmission. We introduce the task of Age upon Decision (AuD) aimed at the timeliness of tasks used for decision-making, which highlights the timeliness of the information at decision-making moments. For the case in which dynamic task generation and random fading channels are considered, we provide a task AuD minimization design by jointly selecting UE and allocating blocklength. In particular, to solve the task AuD minimization problem, we transform the optimization problem to a Markov Decision Process problem and propose an Error Probability-Controlled Action-Masked Proximal Policy Optimization (EMPPO) algorithm. Via simulation, we show that the proposed design achieves a lower AuD than baseline methods across various network conditions, especially in scenarios with significant channel Signal-to-Noise Ratio (SNR) differences and low average SNR, which shows the robustness of EMPPO and its potential for real-time applications. Full article
(This article belongs to the Special Issue Edge Computing in IoT Networks Based on Artificial Intelligence)
Show Figures

Figure 1

24 pages, 967 KB  
Article
Effective Energy Efficiency under Delay–Outage Probability Constraints and F-Composite Fading
by Fahad Qasmi, Irfan Muhammad, Hirley Alves and Matti Latva-aho
Sensors 2024, 24(7), 2328; https://doi.org/10.3390/s24072328 - 6 Apr 2024
Viewed by 1513
Abstract
The paradigm of the Next Generation cellular network (6G) and beyond is machine-type communications (MTCs), where numerous Internet of Things (IoT) devices operate autonomously without human intervention over wireless channels. IoT’s autonomous and energy-intensive characteristics highlight effective energy efficiency (EEE) as a crucial [...] Read more.
The paradigm of the Next Generation cellular network (6G) and beyond is machine-type communications (MTCs), where numerous Internet of Things (IoT) devices operate autonomously without human intervention over wireless channels. IoT’s autonomous and energy-intensive characteristics highlight effective energy efficiency (EEE) as a crucial key performance indicator (KPI) of 6G. However, there is a lack of investigation on the EEE of random arrival traffic, which is the underlying platform for MTCs. In this work, we explore the distinct characteristics of F-composite fading channels, which specify the combined impact of multipath fading and shadowing. Furthermore, we evaluate the EEE over such fading under a finite blocklength regime and QoS constraints where IoT applications generate constant and sporadic traffic. We consider a point-to-point buffer-aided communication system model, where (1) an uplink transmission under a finite blocklength regime is examined; (2) we make realistic assumptions regarding the perfect channel state information (CSI) available at the receiver, and the channel is characterized by the F-composite fading model; and (3) due to its effectiveness and tractability, application data are found to have an average arrival rate calculated using Markovian sources models. To this end, we derive an exact closed-form expression for outage probability and the effective rate, which provides an accurate approximation for our analysis. Moreover, we determine the arrival and required service rates that satisfy the QoS constraints by applying effective bandwidth and capacity theories. The EEE is shown to be quasiconcave, with a trade-off between the transmit power and the rate for maximising the EEE. Measuring the impact of transmission power or rate individually is quite complex, but this complexity is further intensified when both variables are considered simultaneously. Thus, we formulate power allocation (PA) and rate allocation (RA) optimisation problems individually and jointly to maximise the EEE under a QoS constraint and solve such a problem numerically through a particle swarm optimization (PSO) algorithm. Finally, we examine the EEE performance in the context of line-of-sight and shadowing parameters. Full article
Show Figures

Figure 1

23 pages, 663 KB  
Article
Joint Trajectory Design and Resource Optimization in UAV-Assisted Caching-Enabled Networks with Finite Blocklength Transmissions
by Yang Yang and Mustafa Cenk Gursoy
Drones 2024, 8(1), 12; https://doi.org/10.3390/drones8010012 - 4 Jan 2024
Cited by 2 | Viewed by 2400
Abstract
In this study, we design and analyze a reliability-oriented downlink wireless network assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes. In the network, ground user equipments (GUEs) request content from a remote [...] Read more.
In this study, we design and analyze a reliability-oriented downlink wireless network assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access (NOMA) transmission and finite blocklength (FBL) codes. In the network, ground user equipments (GUEs) request content from a remote base station (BS), and there are no direct connections between the BS and the GUEs. To address this, we employ a UAV with a limited caching capacity to assist the BS in completing the communication. The UAV can either request uncached content from the BS and then serve the GUEs or directly transmit cached content to the GUEs. In this paper, we first introduce the decoding error rate within the FBL regime and explore caching policies for the UAV. Subsequently, we formulate an optimization problem aimed at minimizing the average maximum end-to-end decoding error rate across all GUEs while considering the coding length and maximum UAV transmission power constraints. We propose a two-step alternating optimization scheme embedded within a deep deterministic policy gradient (DDPG) algorithm to jointly determine the UAV trajectory and transmission power allocations, as well as blocklength of downloading phase, and our numerical results show that the combined learning-optimization algorithm efficiently addresses the considered problem. In particular, it is shown that a well-designed UAV trajectory, relaxing the FBL constraint, increasing the cache size, and providing a higher UAV transmission power budget all lead to improved performance. Full article
Show Figures

Figure 1

15 pages, 631 KB  
Article
Optimizing Finite-Blocklength Nested Linear Secrecy Codes: Using the Worst Code to Find the Best Code
by Morteza Shoushtari and Willie Harrison
Entropy 2023, 25(10), 1456; https://doi.org/10.3390/e25101456 - 17 Oct 2023
Cited by 2 | Viewed by 1691
Abstract
Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. [...] Read more.
Nested linear coding is a widely used technique in wireless communication systems for improving both security and reliability. Some parameters, such as the relative generalized Hamming weight and the relative dimension/length profile, can be used to characterize the performance of nested linear codes. In addition, the rank properties of generator and parity-check matrices can also precisely characterize their security performance. Despite this, finding optimal nested linear secrecy codes remains a challenge in the finite-blocklength regime, often requiring brute-force search methods. This paper investigates the properties of nested linear codes, introduces a new representation of the relative generalized Hamming weight, and proposes a novel method for finding the best nested linear secrecy code for the binary erasure wiretap channel by working from the worst nested linear secrecy code in the dual space. We demonstrate that our algorithm significantly outperforms the brute-force technique in terms of speed and efficiency. Full article
(This article belongs to the Special Issue Information Theory and Coding for Wireless Communications II)
Show Figures

Figure 1

32 pages, 1958 KB  
Tutorial
An Information-Theoretic View of Mixed-Delay Traffic in 5G and 6G
by Homa Nikbakht, Michèle Wigger, Malcolm Egan, Shlomo Shamai (Shitz), Jean-Marie Gorce and H. Vincent Poor
Entropy 2022, 24(5), 637; https://doi.org/10.3390/e24050637 - 30 Apr 2022
Cited by 13 | Viewed by 3731
Abstract
Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the [...] Read more.
Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes. Full article
(This article belongs to the Special Issue Wireless Networks: Information Theoretic Perspectives Ⅱ)
Show Figures

Figure 1

20 pages, 1629 KB  
Article
Delay-Sensitive NOMA-HARQ for Short Packet Communications
by Faisal Nadeem, Mahyar Shirvanimoghaddam, Yonghui Li and Branka Vucetic
Entropy 2021, 23(7), 880; https://doi.org/10.3390/e23070880 - 9 Jul 2021
Cited by 9 | Viewed by 3226
Abstract
This paper investigates the two-user uplink non-orthogonal multiple access (NOMA) paired with the hybrid automatic repeat request (HARQ) in the finite blocklength regime, where the target latency of each user is the priority. To limit the packet delivery delay and avoid packet queuing [...] Read more.
This paper investigates the two-user uplink non-orthogonal multiple access (NOMA) paired with the hybrid automatic repeat request (HARQ) in the finite blocklength regime, where the target latency of each user is the priority. To limit the packet delivery delay and avoid packet queuing of the users, we propose a novel NOMA-HARQ approach where the retransmission of each packet is served non-orthogonally with the new packet in the same time slot. We use a Markov model (MM) to analyze the dynamics of the uplink NOMA-HARQ with one retransmission and characterize the packet error rate (PER), throughput, and latency performance of each user. We also present numerical optimizations to find the optimal power ratios of each user. Numerical results show that the proposed scheme significantly outperforms the standard NOMA-HARQ in terms of packet delivery delay at the target PER. Full article
(This article belongs to the Special Issue Short Packet Communications for 5G and Beyond)
Show Figures

Figure 1

21 pages, 1037 KB  
Article
Fundamental Limits of Non-Orthogonal Multiple Access (NOMA) for the Massive Gaussian Broadcast Channel in Finite Block-Length
by Jean-Marie Gorce, Philippe Mary, Dadja Anade and Jean-Marc Kélif
Sensors 2021, 21(3), 715; https://doi.org/10.3390/s21030715 - 21 Jan 2021
Cited by 3 | Viewed by 3060
Abstract
Superposition coding (SC) has been known to be capacity-achieving for the Gaussian memoryless broadcast channel for more than 30 years. However, SC regained interest in the context of non-orthogonal multiple access (NOMA) in 5G. From an information theory point of view, SC is [...] Read more.
Superposition coding (SC) has been known to be capacity-achieving for the Gaussian memoryless broadcast channel for more than 30 years. However, SC regained interest in the context of non-orthogonal multiple access (NOMA) in 5G. From an information theory point of view, SC is capacity-achieving in the broadcast Gaussian channel, even when the number of users tends to infinity. However, using SC has two drawbacks: the decoder complexity increases drastically with the number of simultaneous receivers, and the latency is unbounded since SC is optimal only in the asymptotic regime. To evaluate these effects quantitatively in terms of fundamental limits, we introduce a finite time transmission constraint imposed at the base station, and we evaluate fundamental trade-offs between the maximal number of superposed users, the coding block-length and the block error probability. The energy efficiency loss due to these constraints is evaluated analytically and by simulation. Orthogonal sharing appears to outperform SC for hard delay constraints (equivalent to short block-length) and in low spectral efficiency regime (below one bit per channel use). These results are obtained by the association of stochastic geometry and finite block-length information theory. Full article
(This article belongs to the Special Issue Massive and Reliable Sensor Communications with LPWANs Technologies)
Show Figures

Figure 1

21 pages, 519 KB  
Article
Time-Limited Codewords over Band-Limited Channels: Data Rates and the Dimension of the W-T Space
by Youssef Jaffal and Ibrahim Abou-Faycal
Entropy 2020, 22(9), 924; https://doi.org/10.3390/e22090924 - 23 Aug 2020
Cited by 2 | Viewed by 2712
Abstract
We consider a communication system whereby T-seconds time-limited codewords are transmitted over a W-Hz band-limited additive white Gaussian noise channel. In the asymptotic regime as WT, it is known that the maximal achievable rates with such a [...] Read more.
We consider a communication system whereby T-seconds time-limited codewords are transmitted over a W-Hz band-limited additive white Gaussian noise channel. In the asymptotic regime as WT, it is known that the maximal achievable rates with such a scheme converge to Shannon’s capacity with the presence of 2WT degrees of freedom. In this work we study the degrees of freedom and the achievable information rates for finite values of WT. We use prolate spheroidal wave functions to obtain an information lossless equivalent discrete formulation and then we apply Polyanskiy’s results on coding in the finite block-length regime. We derive upper and lower bounds on the achievable rates and the corresponding degrees of freedom and we numerically evaluate them for sample values of 2WT. The bounds are asymptotically tight and numerical computations show the gap between them decreases as 2WT increases. Additionally, the possible decrease from 2WT in the available degrees of freedom is upper-bounded by a logarithmic function of 2WT. Full article
(This article belongs to the Special Issue Finite-Length Information Theory)
Show Figures

Figure 1

12 pages, 1314 KB  
Article
Performance Analysis of Wireless Information Surveillance in Machine-Type Communication at Finite Blocklength Regime
by Ruonan Dong, Baogang Li and Binyang Yan
Sensors 2019, 19(13), 3031; https://doi.org/10.3390/s19133031 - 9 Jul 2019
Viewed by 3076
Abstract
The Internet of Things (IoT) will feature pervasive sensing and control capabilities via the massive deployment of machine-type communication devices in order to greatly improve daily life. However, machine-type communications can be illegally used (e.g., by criminals or terrorists) which is difficult to [...] Read more.
The Internet of Things (IoT) will feature pervasive sensing and control capabilities via the massive deployment of machine-type communication devices in order to greatly improve daily life. However, machine-type communications can be illegally used (e.g., by criminals or terrorists) which is difficult to monitor, and thus presents new security challenges. The information exchanged in machine-type communications is usually transmitted in short packets. Thus, this paper investigates a legitimate surveillance system via proactive eavesdropping at finite blocklength regime. Under the finite blocklength regime, we analyze the channel coding rate of the eavesdropping link and the suspicious link. We find that the legitimate monitor can still eavesdrop the information sent by the suspicious transmitter as the blocklength decreases, even when the eavesdropping is failed under the Shannon capacity regime. Moreover, we define a metric called the effective eavesdropping rate and study the monotonicity. From the analysis of monotonicity, the existence of a maximum effective eavesdropping rate for a moderate or even high signal-to-noise (SNR) is verified. Finally, numerical results are provided and discussed. In the simulation, we also find that the maximum effective eavesdropping rate slowly increases with the blocklength. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

15 pages, 371 KB  
Article
Performance Evaluation of HARQ Schemes for the Internet of Things
by Lorenzo Vangelista and Marco Centenaro
Computers 2018, 7(4), 48; https://doi.org/10.3390/computers7040048 - 25 Sep 2018
Cited by 14 | Viewed by 6202
Abstract
Hybrid Automatic Repeat reQuest (HARQ) techniques are widely employed in the most important wireless systems, e.g., the Long Term Evolution (LTE) cellular standard, to increase the reliability of the communication. Despite these schemes have been widely studied in literature in the past several [...] Read more.
Hybrid Automatic Repeat reQuest (HARQ) techniques are widely employed in the most important wireless systems, e.g., the Long Term Evolution (LTE) cellular standard, to increase the reliability of the communication. Despite these schemes have been widely studied in literature in the past several years, the recent results obtained by Polyanskiy, Poor, and Verdú on the finite-blocklength regime disclosed new possibilities for the research on HARQ schemes. Indeed, new communications trends, which are usually part of the Internet of Things (IoT) paradigm, are characterized by very short packet sizes and a high reliability requirement and, therefore, they call for efficient HARQ techniques. In many scenarios, the energy efficiency of the communication plays a key role as well. In this paper, we aim at providing a comprehensive performance comparison of various kinds of HARQ schemes in the context of short-packet transmissions with energy constraints. We derive optimal power allocation strategies and we show that a minimum 50% energy saving can be achieved after very few transmission attempts if we enable packet combining at the receiver side. Full article
Show Figures

Figure 1

Back to TopTop