Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = fibro-fatty infiltrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 649 KiB  
Review
Desmosomal Versus Non-Desmosomal Arrhythmogenic Cardiomyopathies: A State-of-the-Art Review
by Kristian Galanti, Lorena Iezzi, Maria Luana Rizzuto, Daniele Falco, Giada Negri, Hoang Nhat Pham, Davide Mansour, Roberta Giansante, Liborio Stuppia, Lorenzo Mazzocchetti, Sabina Gallina, Cesare Mantini, Mohammed Y. Khanji, C. Anwar A. Chahal and Fabrizio Ricci
Cardiogenetics 2025, 15(3), 22; https://doi.org/10.3390/cardiogenetics15030022 - 1 Aug 2025
Viewed by 63
Abstract
Arrhythmogenic cardiomyopathies (ACMs) are a phenotypically and etiologically heterogeneous group of myocardial disorders characterized by fibrotic or fibro-fatty replacement of ventricular myocardium, electrical instability, and an elevated risk of sudden cardiac death. Initially identified as a right ventricular disease, ACMs are now recognized [...] Read more.
Arrhythmogenic cardiomyopathies (ACMs) are a phenotypically and etiologically heterogeneous group of myocardial disorders characterized by fibrotic or fibro-fatty replacement of ventricular myocardium, electrical instability, and an elevated risk of sudden cardiac death. Initially identified as a right ventricular disease, ACMs are now recognized to include biventricular and left-dominant forms. Genetic causes account for a substantial proportion of cases and include desmosomal variants, non-desmosomal variants, and familial gene-elusive forms with no identifiable pathogenic mutation. Nongenetic etiologies, including post-inflammatory, autoimmune, and infiltrative mechanisms, may mimic the phenotype. In many patients, the disease remains idiopathic despite comprehensive evaluation. Cardiac magnetic resonance imaging has emerged as a key tool for identifying non-ischemic scar patterns and for distinguishing arrhythmogenic phenotypes from other cardiomyopathies. Emerging classifications propose the unifying concept of scarring cardiomyopathies based on shared structural substrates, although global consensus is evolving. Risk stratification remains challenging, particularly in patients without overt systolic dysfunction or identifiable genetic markers. Advances in tissue phenotyping, multi-omics, and artificial intelligence hold promise for improved prognostic assessment and individualized therapy. Full article
(This article belongs to the Section Cardiovascular Genetics in Clinical Practice)
Show Figures

Figure 1

32 pages, 1271 KiB  
Review
Atrial Cardiomyopathy in Atrial Fibrillation: Mechanistic Pathways and Emerging Treatment Concepts
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Nikolaos Ktenopoulos, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
J. Clin. Med. 2025, 14(9), 3250; https://doi.org/10.3390/jcm14093250 - 7 May 2025
Cited by 5 | Viewed by 1166
Abstract
Atrial fibrillation (AF) is increasingly recognized not merely as an arrhythmia, but as a clinical manifestation of atrial cardiomyopathy (AtCM)—a progressive, multifaceted disease of the atrial myocardium involving structural, electrical, mechanical, and molecular remodeling. AtCM often precedes AF onset, sustains its perpetuation, and [...] Read more.
Atrial fibrillation (AF) is increasingly recognized not merely as an arrhythmia, but as a clinical manifestation of atrial cardiomyopathy (AtCM)—a progressive, multifaceted disease of the atrial myocardium involving structural, electrical, mechanical, and molecular remodeling. AtCM often precedes AF onset, sustains its perpetuation, and contributes to thromboembolic risk independently of rhythm status. Emerging evidence implicates diverse pathophysiological drivers of AtCM, including inflammation, epicardial adipose tissue, metabolic dysfunction, oxidative stress, ageing, and sex-specific remodeling. The NLRP3 inflammasome has emerged as a central effector in atrial inflammation and remodeling. Gut microbial dysbiosis, lipid dicarbonyl stress, and fibro-fatty infiltration are also increasingly recognized as contributors to arrhythmogenesis. AtCM is further linked to atrial functional valve regurgitation and adverse outcomes in AF. Therapeutically, substrate-directed strategies—ranging from metabolic modulation and immunomodulation to early rhythm control—offer promise for altering the disease trajectory. This review synthesizes mechanistic insights into AtCM and discusses emerging therapeutic paradigms that aim not merely to suppress arrhythmia but to modify the underlying substrate. Recognizing AF as a syndrome of atrial disease reframes management strategies and highlights the urgent need for precision medicine approaches targeting the atrial substrate. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

7 pages, 1510 KiB  
Brief Report
Epicardial Adipose Tissue in Arrhythmogenic Cardiomyopathy
by Davide Lapolla, Luca Canovi, Maria Letizia Berloni, Veronica Amantea, Cristina Balla, Federico Marchini, Evelina Faragasso, Matteo Bertini and Elisabetta Tonet
Biology 2025, 14(3), 278; https://doi.org/10.3390/biology14030278 - 8 Mar 2025
Cited by 1 | Viewed by 658
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by fibrofatty replacement of the ventricular myocardium, with an estimated prevalence of 1:5000 people in the general population. Sudden cardiac death is the first manifestation of this disease in 16–23% of patients with ACM. [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by fibrofatty replacement of the ventricular myocardium, with an estimated prevalence of 1:5000 people in the general population. Sudden cardiac death is the first manifestation of this disease in 16–23% of patients with ACM. Fibrofatty infiltration can be identified with noninvasive cardiac magnetic resonance. Studies of epicardial fat deposits have suggested pathogenic roles of epicardial fats in mediating cardiac diseases and arrhythmias. Although myocardial fat infiltration has been well described in ACM, changes in epicardial fat deposits with this disease have not been well investigated. Our study shows that patients with ACM have a higher amount of EAT compared to controls. Additionally, the EAT amount seems to increase with the evolution of the disease. Full article
Show Figures

Figure 1

19 pages, 319 KiB  
Review
Evaluating Pediatric NAFLD with Controlled Attenuation Parameter: A Comprehensive Narrative Review
by Ingrid Arteaga, Carla Chacón, Alba Martínez-Escudé, Irene Ruiz Rojano, Galadriel Diez-Fadrique, Meritxell Carmona-Cervelló and Pere Torán-Monserrat
Diagnostics 2025, 15(3), 299; https://doi.org/10.3390/diagnostics15030299 - 27 Jan 2025
Viewed by 1011
Abstract
Non-alcoholic fatty liver disease (NAFLD) in the pediatric population has emerged as a significant health concern due to its alarming rise in prevalence. In children, the characteristics of the disease differ from those seen in adults. NAFLD may progress to more severe liver [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) in the pediatric population has emerged as a significant health concern due to its alarming rise in prevalence. In children, the characteristics of the disease differ from those seen in adults. NAFLD may progress to more severe liver disease in children compared to adults with similar profiles. Liver biopsy remains the gold standard for diagnosis; its invasive nature and high cost limit its use as a first-line tool. Alternatively, magnetic resonance imaging (MRI) techniques, such as magnetic resonance imaging-estimated liver proton density fat fraction (MRI-PDFF), have shown a good correlation with the degree of histological steatosis, although their use is limited by high costs and limited accessibility. Controlled attenuation parameter (CAP), integrated with vibration-controlled transient elastography (VCTE) (FibroScan®), is a novel non-invasive, accessible, and effective method for diagnosing hepatic steatosis. In this article, we reviewed the existing literature on the diagnostic accuracy of CAP in pediatric NAFLD. The PubMed and EMBASE databases were searched. Seven relevant studies were identified, conducted in pediatric hospital populations with specific demographic characteristics. Two of these studies compared CAP with liver biopsy, one compared CAP with liver biopsy and MRI-PDFF, and the remaining four compared CAP with MRI. Overall, CAP proved to be accurate in detecting the presence or absence of fatty infiltration, positioning it as a promising tool to simplify the diagnosis of NAFLD in children. However, further studies in larger populations are needed to confirm these findings and facilitate its implementation in routine clinical practice. Full article
(This article belongs to the Special Issue Pathology of Hepatobiliary Diseases)
22 pages, 5579 KiB  
Article
Adipocyte-Mediated Electrophysiological Remodeling of PKP-2 Mutant Human Pluripotent Stem Cell-Derived Cardiomyocytes
by Justin Morrissette-McAlmon, Christianne J. Chua, Alexander Arking, Stanley Chun Ming Wu, Roald Teuben, Elaine Zhelan Chen, Leslie Tung and Kenneth R. Boheler
Biomedicines 2024, 12(11), 2601; https://doi.org/10.3390/biomedicines12112601 - 14 Nov 2024
Viewed by 1333
Abstract
Background: Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder responsible for nearly a quarter of sports-related sudden cardiac deaths. ACM cases caused by mutations in desmosome proteins lead to right ventricular enlargement, the loss of cardiomyocytes, and fibrofatty tissue replacement, disrupting electrical and mechanical [...] Read more.
Background: Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder responsible for nearly a quarter of sports-related sudden cardiac deaths. ACM cases caused by mutations in desmosome proteins lead to right ventricular enlargement, the loss of cardiomyocytes, and fibrofatty tissue replacement, disrupting electrical and mechanical stability. It is currently unknown how paracrine factors secreted by infiltrating fatty tissues affect ACM cardiomyocyte electrophysiology. Methods: A normal and a PKP2 mutant (c.971_972InsT) ACM hiPSC line were cultivated and differentiated into cardiomyocytes (CMs). Adipocytes were differentiated from human adipose stem cells, and adipocyte conditioned medium (AdCM) was collected. Optical mapping and phenotypic analyses were conducted on human iPSC-cardiomyocytes (hiPSC-CMs) cultured in cardiac maintenance medium (CMM) and either with AdCM or specific cytokines. Results: Significant differences were observed in voltage parameters such as the action potential duration (APD80, APD30), conduction velocity (CV), and CV heterogeneity. When cultured in AdCM relative to CMM, the APD80 increased and the CV decreased significantly in both groups; however, the magnitudes of changes often differed significantly between 1 and 7 days of cultivation. Cytokine exposure (IL-6, IL-8, MCP-1, CFD) affected the APD and CV in both the normal and PKP2 mutant hiPSC-CMs, with opposite effects. NF-kB signaling was also found to differ between the normal and PKP2 mutant hiPSC-CMs in response to AdCM and IL-6. Conclusions: Our study shows that hiPSC-CMs from normal and mPKP2 ACM lines exhibit distinct molecular and functional responses to paracrine factors, with differences in RNA expression and electrophysiology. These different responses to paracrine factors may contribute to arrhythmogenic propensity. Full article
(This article belongs to the Special Issue Advanced Research in Arrhythmogenic Cardiomyopathy)
Show Figures

Graphical abstract

17 pages, 6439 KiB  
Review
Role of Cardiac Magnetic Resonance in Inflammatory and Infiltrative Cardiomyopathies: A Narrative Review
by Davide Marchetti, Federica Buzzi, Riccardo Di Febo, Sara Modugno, Matteo Schillaci, Pasquale Paolisso, Marco Doldi, Eleonora Melotti, Angelo Ratti, Andrea Provera, Gianluca Guarnieri, Riccardo Terzi, Michele Gallazzi, Edoardo Conte and Daniele Andreini
J. Clin. Med. 2024, 13(16), 4733; https://doi.org/10.3390/jcm13164733 - 12 Aug 2024
Cited by 2 | Viewed by 1888
Abstract
Cardiac magnetic resonance (CMR) has acquired a pivotal role in modern cardiology. It represents the gold standard for biventricular volume and systolic function assessment. Moreover, CMR allows for non-invasive myocardial tissue evaluation, highlighting tissue edema, fibrosis, fibro-fatty infiltration and iron overload. This manuscript [...] Read more.
Cardiac magnetic resonance (CMR) has acquired a pivotal role in modern cardiology. It represents the gold standard for biventricular volume and systolic function assessment. Moreover, CMR allows for non-invasive myocardial tissue evaluation, highlighting tissue edema, fibrosis, fibro-fatty infiltration and iron overload. This manuscript aims to review the impact of CMR in the main inflammatory and infiltrative cardiomyopathies, providing details on specific imaging patterns and insights regarding the most relevant trials in the setting. Full article
(This article belongs to the Special Issue Trends and Prospects in Cardiac MRI)
Show Figures

Figure 1

17 pages, 2133 KiB  
Review
Novel Technologies to Address the Lower Motor Neuron Injury and Augment Reconstruction in Spinal Cord Injury
by Stanley F. Bazarek, Matthias J. Krenn, Sameer B. Shah, Ross M. Mandeville and Justin M. Brown
Cells 2024, 13(14), 1231; https://doi.org/10.3390/cells13141231 - 22 Jul 2024
Cited by 3 | Viewed by 3073
Abstract
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within [...] Read more.
Lower motor neuron (LMN) damage results in denervation of the associated muscle targets and is a significant yet under-appreciated component of spinal cord injury (SCI). Denervated muscle undergoes a progressive degeneration and fibro-fatty infiltration that eventually renders the muscle non-viable unless reinnervated within a limited time window. The distal nerve deprived of axons also undergoes degeneration and fibrosis making it less receptive to axons. In this review, we describe the LMN injury associated with SCI and its clinical consequences. The process of degeneration of the muscle and nerve is broken down into the primary components of the neuromuscular circuit and reviewed, including the nerve and Schwann cells, the neuromuscular junction, and the muscle. Finally, we discuss three promising strategies to reverse denervation atrophy. These include providing surrogate axons from local sources; introducing stem cell-derived spinal motor neurons into the nerve to provide the missing axons; and finally, instituting a training program of high-energy electrical stimulation to directly rehabilitate these muscles. Successful interventions for denervation atrophy would significantly expand reconstructive options for cervical SCI and could be transformative for the predominantly LMN injuries of the conus medullaris and cauda equina. Full article
Show Figures

Figure 1

38 pages, 3439 KiB  
Review
Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models
by Christianne J. Chua, Justin Morrissette-McAlmon, Leslie Tung and Kenneth R. Boheler
Genes 2023, 14(10), 1864; https://doi.org/10.3390/genes14101864 - 25 Sep 2023
Cited by 10 | Viewed by 3720
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one [...] Read more.
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress. Full article
(This article belongs to the Special Issue Genetics and Mechanistic Basis of Cardiomyopathies)
Show Figures

Figure 1

21 pages, 1092 KiB  
Review
Using Zebrafish Animal Model to Study the Genetic Underpinning and Mechanism of Arrhythmogenic Cardiomyopathy
by Yujuan Niu, Yuanchao Sun, Yuting Liu, Ke Du, Xiaolei Xu and Yonghe Ding
Int. J. Mol. Sci. 2023, 24(4), 4106; https://doi.org/10.3390/ijms24044106 - 18 Feb 2023
Cited by 3 | Viewed by 3180
Abstract
Arrhythmogenic cardiomyopathy (ACM) is largely an autosomal dominant genetic disorder manifesting fibrofatty infiltration and ventricular arrhythmia with predominantly right ventricular involvement. ACM is one of the major conditions associated with an increased risk of sudden cardiac death, most notably in young individuals and [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is largely an autosomal dominant genetic disorder manifesting fibrofatty infiltration and ventricular arrhythmia with predominantly right ventricular involvement. ACM is one of the major conditions associated with an increased risk of sudden cardiac death, most notably in young individuals and athletes. ACM has strong genetic determinants, and genetic variants in more than 25 genes have been identified to be associated with ACM, accounting for approximately 60% of ACM cases. Genetic studies of ACM in vertebrate animal models such as zebrafish (Danio rerio), which are highly amenable to large-scale genetic and drug screenings, offer unique opportunities to identify and functionally assess new genetic variants associated with ACM and to dissect the underlying molecular and cellular mechanisms at the whole-organism level. Here, we summarize key genes implicated in ACM. We discuss the use of zebrafish models, categorized according to gene manipulation approaches, such as gene knockdown, gene knock-out, transgenic overexpression, and CRISPR/Cas9-mediated knock-in, to study the genetic underpinning and mechanism of ACM. Information gained from genetic and pharmacogenomic studies in such animal models can not only increase our understanding of the pathophysiology of disease progression, but also guide disease diagnosis, prognosis, and the development of innovative therapeutic strategies. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease)
Show Figures

Figure 1

13 pages, 619 KiB  
Review
The Link between NAFLD and Metabolic Syndrome
by Fabiana Radu, Claudia-Gabriela Potcovaru, Teodor Salmen, Petruța Violeta Filip, Corina Pop and Carmen Fierbințeanu-Braticievici
Diagnostics 2023, 13(4), 614; https://doi.org/10.3390/diagnostics13040614 - 7 Feb 2023
Cited by 46 | Viewed by 10787
Abstract
Metabolic syndrome (MetS) is characterized by an association of cardiovascular and diabetes mellitus type 2 risk factors. Although the definition of MetS slightly differs depending on the society that described it, its central diagnostic criteria include impaired fasting glucose, low HDL-cholesterol, elevated triglycerides [...] Read more.
Metabolic syndrome (MetS) is characterized by an association of cardiovascular and diabetes mellitus type 2 risk factors. Although the definition of MetS slightly differs depending on the society that described it, its central diagnostic criteria include impaired fasting glucose, low HDL-cholesterol, elevated triglycerides levels and high blood pressure. Insulin resistance (IR) is believed to be the main cause of MetS and is connected to the level of visceral or intra-abdominal adipose tissue, which could be assessed either by calculating body mass index or by measuring waist circumference. Most recent studies revealed that IR may also be present in non-obese patients, and considered visceral adiposity to be the main effector of MetS’ pathology. Visceral adiposity is strongly linked with hepatic fatty infiltration also known as non-alcoholic fatty liver disease (NAFLD), therefore, the level of fatty acids in the hepatic parenchyma is indirectly linked with MetS, being both a cause and a consequence of this syndrome. Taking into consideration the present pandemic of obesity and its tendency to drift towards a progressively earlier onset due to the Western lifestyle, it leads to an increased NAFLD incidence. Novel therapeutic resources are lifestyle intervention with physical activity, Mediterranean diet, or therapeutic surgical respective metabolic and bariatric surgery or drugs such as SGLT-2i, GLP-1 Ra or vitamin E. NAFLD early diagnosis is important due to its easily available diagnostic tools such as non-invasive tools: clinical and laboratory variables (serum biomarkers): AST to platelet ratio index, fibrosis-4, NAFLD Fibrosis Score, BARD Score, fibro test, enhanced liver fibrosis; imaging-based biomarkers: Controlled attenuation parameter, magnetic resonance imaging proton-density fat fraction, transient elastography (TE) or vibration controlled TE, acoustic radiation force impulse imaging, shear wave elastography, magnetic resonance elastography; and the possibility to prevent its complications, respectively, fibrosis, hepato-cellular carcinoma or liver cirrhosis which can develop into end-stage liver disease. Full article
Show Figures

Figure 1

11 pages, 1842 KiB  
Article
Efficacy and Safety of Angiotensin Receptor Blockers in a Pre-Clinical Model of Arrhythmogenic Cardiomyopathy
by Maicon Landim-Vieira, Aida Rahimi Kahmini, Morgan Engel, Elisa Nicole Cannon, Nuria Amat-Alarcon, Daniel P. Judge, José Renato Pinto and Stephen P. Chelko
Int. J. Mol. Sci. 2022, 23(22), 13909; https://doi.org/10.3390/ijms232213909 - 11 Nov 2022
Cited by 1 | Viewed by 2616
Abstract
Arrhythmogenic Cardiomyopathy (ACM) is a familial heart disease, characterized by contractile dysfunction, ventricular arrhythmias (VAs), and the risk of sudden cardiac death. Currently, implantable cardioverter defibrillators and antiarrhythmics are the mainstays in ACM therapeutics. Angiotensin receptor blockers (ARBs) have been highlighted in the [...] Read more.
Arrhythmogenic Cardiomyopathy (ACM) is a familial heart disease, characterized by contractile dysfunction, ventricular arrhythmias (VAs), and the risk of sudden cardiac death. Currently, implantable cardioverter defibrillators and antiarrhythmics are the mainstays in ACM therapeutics. Angiotensin receptor blockers (ARBs) have been highlighted in the treatment of heart diseases, including ACM. Yet, recent research has additionally implicated ARBs in the genesis of VAs and myocardial lipolysis via the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. The latter is of particular interest, as fibrofatty infiltration is a pathological hallmark in ACM. Here, we tested two ARBs, Valsartan and Telmisartan, and the PPAR agonist, Rosiglitazone, in an animal model of ACM, homozygous Desmoglein-2 mutant mice (Dsg2mut/mut). Cardiac function, premature ventricular contractions (PVCs), fibrofatty scars, PPARα/γ protein levels, and PPAR-mediated mRNA transcripts were assessed. Of note, not a single mouse treated with Rosiglitazone made it to the study endpoint (i.e., 100% mortality: n = 5/5). Telmisartan-treated Dsg2mut/mut mice displayed the preservation of contractile function (percent ejection fraction [%EF]; 74.8 ± 6.8%EF) compared to Vehicle- (42.5 ± 5.6%EF) and Valsartan-treated (63.1 ± 4.4%EF) mice. However, Telmisartan-treated Dsg2mut/mut mice showed increased cardiac wall motion abnormalities, augmented %PVCs, electrocardiographic repolarization/depolarization abnormalities, larger fibrotic lesions, and increased expression of PPARy-regulated gene transcripts compared to their Dsg2mut/mut counterparts. Alternatively, Valsartan-treated Dsg2mut/mut mice harbored fewer myocardial scars, reduced %PVC, and increased Wnt-mediated transcripts. Considering our findings, caution should be taken by physicians when prescribing medications that may increase PPARy signaling in patients with ACM. Full article
(This article belongs to the Special Issue Molecular Sciences in Non-ischemic Cardiomyopathy)
Show Figures

Figure 1

19 pages, 3079 KiB  
Review
Non Coding RNAs as Regulators of Wnt/β-Catenin and Hippo Pathways in Arrhythmogenic Cardiomyopathy
by Marina Piquer-Gil, Sofía Domenech-Dauder, Marta Sepúlveda-Gómez, Carla Machí-Camacho, Aitana Braza-Boïls and Esther Zorio
Biomedicines 2022, 10(10), 2619; https://doi.org/10.3390/biomedicines10102619 - 18 Oct 2022
Cited by 13 | Viewed by 3109
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy histologically characterized by the replacement of myocardium by fibrofatty infiltration, cardiomyocyte loss, and inflammation. ACM has been defined as a desmosomal disease because most of the mutations causing the disease are located in genes encoding desmosomal [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy histologically characterized by the replacement of myocardium by fibrofatty infiltration, cardiomyocyte loss, and inflammation. ACM has been defined as a desmosomal disease because most of the mutations causing the disease are located in genes encoding desmosomal proteins. Interestingly, the instable structures of these intercellular junctions in this disease are closely related to a perturbed Wnt/β-catenin pathway. Imbalance in the Wnt/β-catenin signaling and also in the crosslinked Hippo pathway leads to the transcription of proadipogenic and profibrotic genes. Aiming to shed light on the mechanisms by which Wnt/β-catenin and Hippo pathways modulate the progression of the pathological ACM phenotype, the study of non-coding RNAs (ncRNAs) has emerged as a potential source of actionable targets. ncRNAs comprise a wide range of RNA species (short, large, linear, circular) which are able to finely tune gene expression and determine the final phenotype. Some share recognition sites, thus referred to as competing endogenous RNAs (ceRNAs), and ensure a coordinating action. Recent cancer research studies regarding the key role of ceRNAs in Wnt/β-catenin and Hippo pathways modulation pave the way to better understanding the molecular mechanisms underlying ACM. Full article
(This article belongs to the Special Issue microRNAs in Health and Disease)
Show Figures

Figure 1

15 pages, 3486 KiB  
Article
Adipogenic Signaling Promotes Arrhythmia Substrates before Structural Abnormalities in TMEM43 ARVC
by Sunil K. Vasireddi, Prasongchai Sattayaprasert, Dandan Yang, Adrienne T. Dennis, Emre Bektik, Ji-dong Fu, Judith A. Mackall and Kenneth R. Laurita
J. Pers. Med. 2022, 12(10), 1680; https://doi.org/10.3390/jpm12101680 - 9 Oct 2022
Cited by 10 | Viewed by 2803
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of desmosomal and structural proteins that is characterized by fibro-fatty infiltrate in the ventricles and fatal arrhythmia that can occur early before significant structural abnormalities. Most ARVC mutations interfere with β-catenin–dependent transcription that enhances [...] Read more.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of desmosomal and structural proteins that is characterized by fibro-fatty infiltrate in the ventricles and fatal arrhythmia that can occur early before significant structural abnormalities. Most ARVC mutations interfere with β-catenin–dependent transcription that enhances adipogenesis; however, the mechanistic pathway to arrhythmogenesis is not clear. We hypothesized that adipogenic conditions play an important role in the formation of arrhythmia substrates in ARVC. Cardiac myocyte monolayers co-cultured for 2–4 days with mesenchymal stem cells (MSC) were derived from human-induced pluripotent stem cells with the ARVC5 TMEM43 p.Ser358Leu mutation. The TMEM43 mutation in myocyte co-cultures alone had no significant effect on impulse conduction velocity (CV) or APD. In contrast, when co-cultures were exposed to pro-adipogenic factors for 2–4 days, CV and APD were significantly reduced compared to controls by 49% and 31%, respectively without evidence of adipogenesis. Additionally, these arrhythmia substrates coincided with a significant reduction in IGF-1 expression in MSCs and were mitigated by IGF-1 treatment. These findings suggest that the onset of enhanced adipogenic signaling may be a mechanism of early arrhythmogenesis, which could lead to personalized treatment for arrhythmias associated with TMEM43 and other ARVC mutations. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Cardiology)
Show Figures

Figure 1

18 pages, 5235 KiB  
Article
Humanized Dsp ACM Mouse Model Displays Stress-Induced Cardiac Electrical and Structural Phenotypes
by Tyler L. Stevens, Heather R. Manring, Michael J. Wallace, Aaron Argall, Trevor Dew, Peter Papaioannou, Steve Antwi-Boasiako, Xianyao Xu, Stuart G. Campbell, Fadi G. Akar, Maegen A. Borzok, Thomas J. Hund, Peter J. Mohler, Sara N. Koenig and Mona El Refaey
Cells 2022, 11(19), 3049; https://doi.org/10.3390/cells11193049 - 29 Sep 2022
Cited by 12 | Viewed by 3061
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models. Full article
(This article belongs to the Special Issue Model Systems and Candidate Genes for Inherited Cardiomyopathies)
Show Figures

Figure 1

15 pages, 1887 KiB  
Review
Myocarditis-like Episodes in Patients with Arrhythmogenic Cardiomyopathy: A Systematic Review on the So-Called Hot-Phase of the Disease
by Riccardo Bariani, Ilaria Rigato, Alberto Cipriani, Maria Bueno Marinas, Rudy Celeghin, Cristina Basso, Domenico Corrado, Kalliopi Pilichou and Barbara Bauce
Biomolecules 2022, 12(9), 1324; https://doi.org/10.3390/biom12091324 - 19 Sep 2022
Cited by 43 | Viewed by 3782
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease, characterized by myocytes necrosis with fibrofatty substitution and ventricular arrhythmias that can even lead to sudden cardiac death. The presence of inflammatory cell infiltrates in endomyocardial biopsies or in autoptic specimens of ACM patients [...] Read more.
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease, characterized by myocytes necrosis with fibrofatty substitution and ventricular arrhythmias that can even lead to sudden cardiac death. The presence of inflammatory cell infiltrates in endomyocardial biopsies or in autoptic specimens of ACM patients has been reported, suggesting a possible role of inflammation in the pathophysiology of the disease. Furthermore, chest pain episodes accompanied by electrocardiographic changes and troponin release have been observed and defined as the “hot-phase” phenomenon. The aim of this critical systematic review was to assess the clinical features of ACM patients presenting with “hot-phase” episodes. According to PRISMA guidelines, a search was run in the PubMed, Scopus and Web of Science electronic databases using the following keywords: “arrhythmogenic cardiomyopathy”; “myocarditis” or “arrhythmogenic cardiomyopathy”; “troponin” or “arrhythmogenic cardiomyopathy”; and “hot-phase”. A total of 1433 titles were retrieved, of which 65 studies were potentially relevant to the topic. Through the application of inclusion and exclusion criteria, 9 papers reporting 103 ACM patients who had experienced hot-phase episodes were selected for this review. Age at time of episodes was available in 76% of cases, with the mean age reported being 26 years ± 14 years (min 2–max 71 years). Overall, 86% of patients showed left ventricular epicardial LGE. At the time of hot-phase episodes, 49% received a diagnosis of ACM (Arrhythmogenic left ventricular cardiomyopathy in the majority of cases), 19% of dilated cardiomyopathy and 26% of acute myocarditis. At the genetic study, Desmoplakin (DSP) was the more represented disease-gene (69%), followed by Plakophillin-2 (9%) and Desmoglein-2 (6%). In conclusion, ACM patients showing hot-phase episodes are usually young, and DSP is the most common disease gene, accounting for 69% of cases. Currently, the role of “hot-phase” episodes in disease progression and arrhythmic risk stratification remains to be clarified. Full article
Show Figures

Figure 1

Back to TopTop