Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,518)

Search Parameters:
Keywords = fermentation strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 513 KB  
Article
A Novel Approach for Enhancing the Terpenoid Content in Wine Using Starmerella bacillaris
by María Belén Listur, Valentina Martín, Karina Medina, Francisco Carrau, Eduardo Boido, Eduardo Dellacassa and Laura Fariña
Fermentation 2025, 11(9), 496; https://doi.org/10.3390/fermentation11090496 (registering DOI) - 25 Aug 2025
Abstract
In this study, we investigated the impact of two native strains of Starmerella bacillaris, used both in pure culture and in a co-inoculation with Saccharomyces cerevisiae, on the volatile profile of a chemically defined fermented model must. The focus of this [...] Read more.
In this study, we investigated the impact of two native strains of Starmerella bacillaris, used both in pure culture and in a co-inoculation with Saccharomyces cerevisiae, on the volatile profile of a chemically defined fermented model must. The focus of this study was the production of monoterpenes and sesquiterpenes and their potential sensory contributions. Geraniol and linalool were detected in all fermentations with Starmerella bacillaris, in ranges of 26.7–43.9 µg/L and 34.3–41.3 µg/L, respectively, independent of the inoculation strategy used. Both strains produced concentrations above their respective odour thresholds of 20 µg/L and 25.5 µg/L. Odour activity value (OAV) analysis confirmed that fermentations with Starmerella bacillaris, particularly under co-inoculation conditions, generated the highest OAVs for these monoterpenes. Citronellol was only detected in mixed fermentations, while nerolidol and farnesol isomers were produced in variable amounts, depending on the strain and inoculation strategy, at concentrations below the odour threshold. These findings demonstrate the ability of Starmerella bacillaris to facilitate de novo biosynthesis of linalool, geraniol, and sesquiterpenes during alcoholic fermentation—in the case of linalool and geraniol, at concentrations exceeding their respective odour thresholds—highlighting the biotechnological potential of these native strains to enhance aroma in wines, particularly those made from neutral grape varieties. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

17 pages, 4815 KB  
Article
Response of Soil Organic Carbon Sequestration Rate, Nitrogen Use Efficiency, and Corn Yield to Different Exogenous Carbon Inputs in Rainfed Farmlands of the Ningnan Mountainous Area, Northwest China
by Huanjun Qi, Jinyin Lei, Jinqin He, Jian Wang, Xiaoting Lei, Jianxin Jin and Lina Zhou
Agriculture 2025, 15(17), 1809; https://doi.org/10.3390/agriculture15171809 (registering DOI) - 25 Aug 2025
Abstract
The mechanisms through which different types of exogenous carbon enhance the soil organic carbon sequestration rate (Cseq), nitrogen use efficiency (NUE), and corn yield (CY) in rainfed farmland on the Loess Plateau remain inadequately elucidated. This study established a four-year fixed-site [...] Read more.
The mechanisms through which different types of exogenous carbon enhance the soil organic carbon sequestration rate (Cseq), nitrogen use efficiency (NUE), and corn yield (CY) in rainfed farmland on the Loess Plateau remain inadequately elucidated. This study established a four-year fixed-site experiment in the context of organic materials to increase soil organic carbon storage and enhance corn yield in the dry-farmed areas of the mountainous southern Ningxia region. The research investigates the effects of adding different types of exogenous carbon materials on Cseq, NUE, and CY. The soil type at the experimental base is loessial soil (Huangmian soil), with a soil pH of 8.28 and a baseline organic carbon content of 8.20 g kg−1. The main crop cultivated in this area is corn. The experimental treatments were as follows: (i) N, no fertilization; (ii) CK, 100% nitrogen, phosphorus, and potassium fertilizers; (iii) C, 50%CK + corn straw (pulverized); (iv) M, 50%CK + fermented cow manure; (v) C/M, 50%CK + fermented cow manure + corn straw (1:1). The results show that compared with the CK treatment, the Cseq of C, M, and C/M treatments increased by 488.89%, 355.56%, and 527.78%, respectively. Compared with the CK treatment, the NUE of C, M, and C/M treatments increased by 15.04%, 7.70%, and 12.20%, respectively. Compared with the CK treatment, the CY under the C, M, and C/M treatments were increased by 7.91%, 19.10%, and 11.59%, respectively. The linear regression results show that the Cseq had a significant positive effect on CY (R2 = 0.37) and NUE, R2 = 0.39) (p < 0.0001). The TOPSIS (technique for order preference by similarity to ideal solution) evaluation results indicate that the C/M treatment was the optimal measure for achieving increased corn yield while enhancing Cseq and NUE. Therefore, incorporating a 1:1 mixture of corn straw and cattle manure in rainfed farmland in the mountainous area of southern Ningxia may be the best strategy to improve Cseq and NUE. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

25 pages, 1498 KB  
Article
Metschnikowia pulcherrima as a Tool for Sulphite Reduction and Enhanced Volatile Retention in Noble Rot Wine Fermentation
by Zsuzsanna Bene, Ádám István Hegyi, Hannes Weninger and Kálmán Zoltán Váczy
Fermentation 2025, 11(9), 491; https://doi.org/10.3390/fermentation11090491 - 23 Aug 2025
Viewed by 63
Abstract
The use of non-Saccharomyces species is gaining momentum in modern winemaking as part of broader efforts to reduce chemical inputs and adapt to climate-driven challenges. In this study, Furmint grapes were harvested at two distinct ripeness levels: an early harvest with healthy [...] Read more.
The use of non-Saccharomyces species is gaining momentum in modern winemaking as part of broader efforts to reduce chemical inputs and adapt to climate-driven challenges. In this study, Furmint grapes were harvested at two distinct ripeness levels: an early harvest with healthy berries and a late harvest that included botrytized fruit. Two oenological protocols were compared: a conventional sulphur dioxide-based protocol and an alternative bioprotection-oriented approach that minimized SO2 additions. Bioprotection was carried out using Metschnikowia pulcherrima, followed by sequential inoculation with Torulaspora delbrueckii and Saccharomyces cerevisiae. Grape-derived tannins (from skin and seed) were also added to inhibit oxidative enzymes such as laccase. Fermentation was monitored using standard analytical techniques, with volatile aroma profiles characterized by HS-SPME-GC-MS. Results showed that harvest timing and botrytization strongly influenced the chemical composition of the wines. Moreover, the treatment protocol had a marked effect on the final sensory profile. Wines produced with the bioprotection-oriented protocol displayed enhanced aromatic complexity, particularly through higher concentrations of esters and higher alcohols. Overall, the alternative protocol involving M. pulcherrima-based bioprotection resulted in wines with more pronounced floral and fruity notes, supporting its potential as a viable strategy for producing expressive wines under evolving climatic conditions. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
14 pages, 1640 KB  
Article
Low-Temperature Pretreatment (LT-PT) of Food Waste as a Strategy to Enhance Biomethane Production
by Filip Gamoń, Martyna Nowakowska, Kacper Ronowicz, Kacper Rosicki, Małgorzata Szopińska, Hubert Byliński, Aneta Łuczkiewicz and Sylwia Fudala-Książek
Processes 2025, 13(9), 2682; https://doi.org/10.3390/pr13092682 - 23 Aug 2025
Viewed by 76
Abstract
Food waste (FW) management remains a critical challenge within the circular economy framework. This study examines low-temperature pretreatment (LT-PT) of food waste and its effects on physicochemical transformations and microbial community dynamics. Artificial food waste (AFW) was subjected to LT-PT at 60 °C [...] Read more.
Food waste (FW) management remains a critical challenge within the circular economy framework. This study examines low-temperature pretreatment (LT-PT) of food waste and its effects on physicochemical transformations and microbial community dynamics. Artificial food waste (AFW) was subjected to LT-PT at 60 °C for 24 h, 48 h, and 72 h to assess changes in organic matter solubilization, nitrogen and phosphorus transformations, microbial composition, and biomethane potential. The results show that LT-PT promotes volatile fatty acid (VFA) accumulation, ammonification, and organic matter solubilization, thereby enhancing substrate biodegradability. The largest VFA increase was observed for acetate, whose concentration increased by approximately 0.55 g/L between 0 h and 72 h of LT-PT. Metagenomic analysis revealed a pronounced shift in microbial communities, with fermentative bacteria (Leuconostocaceae) increasing to 53.08% after 24 h of LT-PT, while Cyanobacteria decreased from 81.31% at 0 h to 19.48% at 48 h. Biochemical methane potential (BMP) tests demonstrated that longer LT-PT durations improved methane yield, with the highest production (1170 NmL CH4) recorded after 72 h of pretreatment. Kinetic modeling using first-order and modified Gompertz equations confirmed that LT-PT enhances methane production efficiency by accelerating substrate hydrolysis. These findings indicate that LT-PT is a promising strategy for optimizing food waste valorization via anaerobic digestion, supporting sustainable waste management and renewable energy generation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

36 pages, 865 KB  
Review
Use of Depleted Oil and Gas Reservoirs as Bioreactors to Produce Hydrogen and Capture Carbon Dioxide
by Igor Carvalho Fontes Sampaio, Isabela Viana Lopes de Moura, Josilene Borges Torres Lima Matos, Cleveland Maximino Jones and Paulo Fernando de Almeida
Fermentation 2025, 11(9), 490; https://doi.org/10.3390/fermentation11090490 - 23 Aug 2025
Viewed by 73
Abstract
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) [...] Read more.
The biological production of hydrogen offers a renewable and potentially sustainable alternative for clean energy generation. In Northeast Brazil, depleted oil reservoirs (DORs) present a unique opportunity to integrate biotechnology with existing fossil fuel infrastructure. These subsurface formations, rich in residual hydrocarbons (RH) and native H2 producing microbiota, can be repurposed as bioreactors for hydrogen production. This process, often referred to as “Gold Hydrogen”, involves the in situ microbial conversion of RH into H2, typically via dark fermentation, and is distinct from green, blue, or grey hydrogen due to its reliance on indigenous subsurface biota and RH. Strategies include nutrient modulation and chemical additives to stimulate native hydrogenogenic genera (Clostridium, Petrotoga, Thermotoga) or the injection of improved inocula. While this approach has potential environmental benefits, such as integrated CO2 sequestration and minimized surface disturbance, it also presents risks, namely the production of CO2 and H2S, and fracturing, which require strict monitoring and mitigation. Although infrastructure reuse reduces capital expenditures, achieving economic viability depends on overcoming significant technical, operational, and biotechnological challenges. If widely applied, this model could help decarbonize the energy sector, repurpose legacy infrastructure, and support the global transition toward low-carbon technologies. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Figure 1

29 pages, 2561 KB  
Review
Unlocking Casein Bioactivity: Lactic Acid Bacteria and Molecular Strategies for Peptide Release
by Chenxi Huang and Lianghui Cheng
Int. J. Mol. Sci. 2025, 26(17), 8119; https://doi.org/10.3390/ijms26178119 - 22 Aug 2025
Viewed by 119
Abstract
Bioactive peptides encrypted in bovine β-casein display diverse physiological functions, including antihypertensive, antioxidative, antimicrobial, and immunomodulatory activities. These peptides are normally released during gastrointestinal digestion or microbial fermentation, especially by proteolytic systems of lactic acid bacteria (LAB). However, peptide yields vary widely among [...] Read more.
Bioactive peptides encrypted in bovine β-casein display diverse physiological functions, including antihypertensive, antioxidative, antimicrobial, and immunomodulatory activities. These peptides are normally released during gastrointestinal digestion or microbial fermentation, especially by proteolytic systems of lactic acid bacteria (LAB). However, peptide yields vary widely among LAB strains, reflecting strain-specific protease repertoires. To overcome these limitations, the scientific goal of this study is to provide a comprehensive synthesis of how synthetic biology, molecular biotechnology, and systems-level approaches can be leveraged to enhance the targeted discovery and production of β-casein-derived bioactive peptides. Genome engineering tools such as clustered regularly interspaced short palindromic repeats associated system (CRISPR/Cas) systems have been applied to modulate gene expression and metabolic flux in LAB, while inducible expression platforms allow on-demand peptide production. Additionally, cell-free systems based on LAB lysates further provide rapid prototyping for high-throughput screening. Finally, multi-omics approaches, including genomics, transcriptomics, proteomics, and metabolomics, further help pinpoint regulatory bottlenecks and facilitate rational strain optimization. This review provides a comprehensive overview of bioactive peptides derived from bovine β-casein and highlights recent progress in LAB-based strategies—both natural and engineered—for their efficient release. These advances pave the way for developing next-generation functional fermented foods enriched with targeted bioactivities. Full article
Show Figures

Graphical abstract

15 pages, 2355 KB  
Article
Biodegradation of Carbon Tetrachloride in Groundwater: Microbial Community Shifts and Functional Genes Involvement in Enhanced Reductive Dechlorination
by Zhengwei Liu, Mingbo Sun, Wei Wang, Shaolei Zhao, Yan Xie, Xiaoyu Lin, Jingru Liu and Shucai Zhang
Toxics 2025, 13(8), 704; https://doi.org/10.3390/toxics13080704 - 21 Aug 2025
Viewed by 127
Abstract
Carbon tetrachloride (CT) is a toxic volatile chlorinated hydrocarbon, posing a serious hazard to ecosystem and human health. This study discussed the bioremediation possibility of groundwater contaminated by CT. Enhanced reductive dechlorination bioremediation (ERD) was used to promote the reductive dechlorination process of [...] Read more.
Carbon tetrachloride (CT) is a toxic volatile chlorinated hydrocarbon, posing a serious hazard to ecosystem and human health. This study discussed the bioremediation possibility of groundwater contaminated by CT. Enhanced reductive dechlorination bioremediation (ERD) was used to promote the reductive dechlorination process of CT by adding yeast extract as a supplementary electron donor. The microcosm samples of the Control and Experi group were setup in the experiment, and the CT degradation efficiency and microbial community structure changes over 150 days were monitored. The results showed that the Experi group achieved complete degradation of CT within 40 days, while the control group had no significant change. By analyzing the physical and chemical indexes such as VFAs, sulfate ions, oxidation–reduction potential, pH value and so on, the key changes in the degradation process of CT were revealed. Microbial community analysis showed that specific microorganisms such as Acinetobacter johnsonii, Aeromonas media and Enterobacter mori played a significant role in the degradation of CT. They may produce hydrogen through fermentation to provide electron donors for the reductive dechlorination of CT. In addition, the genes of reductive dehalogenase synthase related to CT degradation were also identified, which provided molecular evidence for understanding the biodegradation mechanism of CT. The results deliver a scientific basis for optimizing the bioremediation strategy of CT-contaminated groundwater. Full article
Show Figures

Figure 1

33 pages, 2609 KB  
Review
A Comprehensive Approach to Nanotechnology Innovations in Biogas Production: Advancing Efficiency and Sustainability
by Carmen Mateescu, Nicoleta-Oana Nicula and Eduard-Marius Lungulescu
Nanomaterials 2025, 15(16), 1285; https://doi.org/10.3390/nano15161285 - 21 Aug 2025
Viewed by 290
Abstract
The biochemical conversion of biomass waste and organic slurries into clean methane is a valuable strategy for both reducing environmental pollution and advancing alternative energy sources to support energy security. Anaerobic digestion (AD), a mature renewable technology operated in high-performance bioreactors, continues to [...] Read more.
The biochemical conversion of biomass waste and organic slurries into clean methane is a valuable strategy for both reducing environmental pollution and advancing alternative energy sources to support energy security. Anaerobic digestion (AD), a mature renewable technology operated in high-performance bioreactors, continues to attract attention for improvements in energy efficiency, profitability, and long-term sustainability at scale. Recent efforts focus on optimizing biochemical reactions throughout all phases of the anaerobic process while mitigating the production of inhibitory compounds that reduce biodegradation efficiency and, consequently, economic viability. A relatively underexplored but promising strategy involves supplementing fermentation substrates with nanoscale additives to boost biomethane yield. Laboratory-scale studies suggest that nanoparticles (NPs) can enhance process stability, improve biogas yield and quality, and positively influence the value of by-products. This paper presents a comprehensive overview of recent advancements in the application of nanoparticles in catalyzing anaerobic digestion, considering both biochemical and economic perspectives. It evaluates the influence of NPs on bioconversion efficiency at various stages of the process, explores specific metabolic pathways, and addresses challenges associated with recalcitrant biomass. Additionally, currently employed and emerging pre-treatment methods are briefly discussed, highlighting how they affect digestibility and methane production. The study also assesses the potential of various nanocatalysts to enhance anaerobic biodegradation and identifies research gaps that limit the transition from laboratory research to industrial-scale applications. Further investigation is necessary to ensure consistent performance and economic feasibility before widespread adoption can be achieved. Full article
Show Figures

Graphical abstract

13 pages, 2095 KB  
Article
Combination Strategy of Bioenzymes and Sophorolipid Pretreatments Enhance Volatile Fatty Acid Production Based on Co-Fermentation of Waste Activated Sludge and Rubberwood Hydrolysates
by Fen Yin, Wenxuan Bie, Xiaojun Ma, Jianing Li, Yingying Zheng and Dongna Li
Fermentation 2025, 11(8), 486; https://doi.org/10.3390/fermentation11080486 - 21 Aug 2025
Viewed by 208
Abstract
In this study, we developed a combination strategy of bioenzymes and sophorolipid (SL) co-pretreatment to enhance volatile fatty acids (VFAs) in co-fermentation of waste activated sludge (WAS) and rubberwood hydrolysates (RWHs). Among all the pretreatments, SL and laccase co-pretreatment markedly increased soluble bioavailable [...] Read more.
In this study, we developed a combination strategy of bioenzymes and sophorolipid (SL) co-pretreatment to enhance volatile fatty acids (VFAs) in co-fermentation of waste activated sludge (WAS) and rubberwood hydrolysates (RWHs). Among all the pretreatments, SL and laccase co-pretreatment markedly increased soluble bioavailable substrates (carbohydrates and proteins) by inducing EPS catabolism and WAS disintegration, and obtained the highest VFAs yield of 7049.43 mg/L. The proportion of VFA composition can be controlled by modifying the types and amounts of added bioenzymes. Under SL and laccase co-pretreatment conditions, RWHs were more efficiently converted into VFAs due to the higher activity of WAS, resulting in lower cellulose (3.41%) and lignin (0.66%) content in the fermentation broth. Compared with other pretreatments, SL and laccase co-pretreatment enhanced the enrichment of the functional microorganisms, including anaerobic fermentation bacteria (Firmicutes, Bacteroidota, and Proteobacteria) and reducing bacteria (Acinerobacter and Ahniella). Therefore, the combination pretreatments might be a promising solution for strengthening VFA accumulation in the WAS and RWH co-fermentation. Full article
Show Figures

Graphical abstract

22 pages, 1706 KB  
Review
Integrating Precision Medicine and Digital Health in Personalized Weight Management: The Central Role of Nutrition
by Xiaoguang Liu, Miaomiao Xu, Huiguo Wang and Lin Zhu
Nutrients 2025, 17(16), 2695; https://doi.org/10.3390/nu17162695 - 20 Aug 2025
Viewed by 373
Abstract
Obesity is a global health challenge marked by substantial inter-individual differences in responses to dietary and lifestyle interventions. Traditional weight loss strategies often overlook critical biological variations in genetics, metabolic profiles, and gut microbiota composition, contributing to poor adherence and variable outcomes. Our [...] Read more.
Obesity is a global health challenge marked by substantial inter-individual differences in responses to dietary and lifestyle interventions. Traditional weight loss strategies often overlook critical biological variations in genetics, metabolic profiles, and gut microbiota composition, contributing to poor adherence and variable outcomes. Our primary aim is to identify key biological and behavioral effectors relevant to precision medicine for weight control, with a particular focus on nutrition, while also discussing their current and potential integration into digital health platforms. Thus, this review aligns more closely with the identification of influential factors within precision medicine (e.g., genetic, metabolic, and microbiome factors) but also explores how these factors are currently integrated into digital health tools. We synthesize recent advances in nutrigenomics, nutritional metabolomics, and microbiome-informed nutrition, highlighting how tailored dietary strategies—such as high-protein, low-glycemic, polyphenol-enriched, and fiber-based diets—can be aligned with specific genetic variants (e.g., FTO and MC4R), metabolic phenotypes (e.g., insulin resistance), and gut microbiota profiles (e.g., Akkermansia muciniphila abundance, SCFA production). In parallel, digital health tools—including mobile health applications, wearable devices, and AI-supported platforms—enhance self-monitoring, adherence, and dynamic feedback in real-world settings. Mechanistic pathways such as gut–brain axis regulation, microbial fermentation, gene–diet interactions, and anti-inflammatory responses are explored to explain inter-individual differences in dietary outcomes. However, challenges such as cost, accessibility, and patient motivation remain and should be addressed to ensure the effective implementation of these integrated strategies in real-world settings. Collectively, these insights underscore the pivotal role of precision nutrition as a cornerstone for personalized, scalable, and sustainable obesity interventions. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

28 pages, 1337 KB  
Review
Recent Advances in Microbial Bioconversion as an Approach to Boost Hydroxytyrosol Recovery from Olive Mill Wastewater
by Irene Maria Zingale, Anna Elisabetta Maccarronello, Claudia Carbone, Cinzia Lucia Randazzo, Teresa Musumeci and Cinzia Caggia
Fermentation 2025, 11(8), 477; https://doi.org/10.3390/fermentation11080477 - 20 Aug 2025
Viewed by 347
Abstract
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic [...] Read more.
Olive mill wastewater (OMWW) is a highly complex matrix derived from olive oil extraction, containing phenolic compounds, lipids, minerals, and organic acids. Hydroxytyrosol (HT), an outstanding antioxidant and health-promoting phenolic compound, has garnered significant interest as a natural preservative and functional ingredient. Enzymatic hydrolysis, utilizing purified enzymes to cleave glycosidic or ester bonds, and microbial bioconversion, employing whole microorganisms with their intrinsic enzymes and metabolic pathways, are effective biotechnological strategies for fostering the release of HT from its conjugated forms. These approaches offer great potential for the sustainable recovery of HT from OMWW, contributing to the valorization of this environmentally impactful agro-industrial by-product. Processed OMWW can lead to clean-label HT-enriched foods and beverages, capitalizing on by-product valorization and improving food safety and quality. In this review, the most important aspects of the chemistry, technology, and microbiology of OMWW were explored in depth. Recent trends and findings in terms of both enzymatic and microbial bioconversion processes are critically discussed, including spontaneous and driven fermentation, using selected microbial strains. These approaches are presented as economically viable options for obtaining HT-enriched OMWW for applications in the food and nutraceutical sectors. The selected topics aim to provide the reader with a solid background while inspiring and facilitating future research and innovation. Full article
(This article belongs to the Special Issue Microbial Upcycling of Organic Waste to Biofuels and Biochemicals)
Show Figures

Graphical abstract

30 pages, 2315 KB  
Article
Exploring the Development of a Clean-Label Vegan Burger Enriched with Fermented Microalgae
by Joseane C. Bassani, Valter F. R. Martins, Joana Barbosa, Marta Coelho, Clara Sousa, Juliana Steffens, Geciane T. Backes, Hugo Pereira, Manuela E. Pintado, Paula C. Teixeira, Alcina M. M. B. Morais and Rui M. S. C. Morais
Foods 2025, 14(16), 2884; https://doi.org/10.3390/foods14162884 - 20 Aug 2025
Viewed by 243
Abstract
Haematococcus pluvialis and Porphyridium cruentum are red microalgae with high biotechnological potential due to their rich composition of bioactive compounds. However, their intense flavor limits their application in food products. This study evaluated the impact of fermentation with Lactiplantibacillus plantarum (30 °C for [...] Read more.
Haematococcus pluvialis and Porphyridium cruentum are red microalgae with high biotechnological potential due to their rich composition of bioactive compounds. However, their intense flavor limits their application in food products. This study evaluated the impact of fermentation with Lactiplantibacillus plantarum (30 °C for 48 h; LAB-to-biomass ratio of 0.1:1; 106 CFU/mL) on the physicochemical and functional properties of H. pluvialis and P. cruentum biomasses. Particular attention was given to antioxidant activity (ABTS and ORAC assays), color, amino acid profiles, and volatile organic compound (VOC) profiles, all of which may influence sensory characteristics. Results demonstrated that non-fermented H. pluvialis exhibited significantly higher antioxidant activity (AA) than P. cruentum. After fermentation, H. pluvialis showed an ABTS value of 3.22 ± 0.35 and an ORAC value of 54.32 ± 1.79 µmol TE/100 mg DW, while P. cruentum showed an ABTS of 0.26 ± 0.00 and an ORAC of 3.11 ± 0.13 µmol TE/100 mg DW. Total phenolic content (TPC) of fermented H. pluvialis and P. cruentum was 1.08 ± 0.23 and 0.18 ± 0.026 mg GAE/100 mg DW, respectively. Both AA and TPC increased after fermentation. Fermentation also significantly affected biomass color. FTIR analysis showed intensification of protein and carbohydrate vibrational bands post-fermentation. GC-MS analysis of VOCs showed that P. cruentum contained 42 VOCs before fermentation, including trans-β-ionone, 4-ethyl-6-hepten-3-one, hexanal, and heptadienal, which are responsible for fishy and algal odors. Fermentation with Lb. plantarum significantly reduced these compounds, lowering trans-β-ionone to 0.1453 mg/L and eliminating 4-ethyl-6-hepten-3-one entirely. H. pluvialis contained 22 VOCs pre-fermentation; fermentation eliminated hexanal and reduced heptadienal to 0.1747 ± 0.0323 mg/L. These changes contributed to improved sensory profiles. Fermentation also induced significant changes in the amino acid profiles of both microalgae. The fermented biomasses were incorporated into vegan burgers made from chickpea, lentil, and quinoa. Color evaluation showed more stable and visually appealing tones, while texture remained within desirable consumer parameters. These findings suggest that Lb. plantarum fermentation is an effective strategy for improving the sensory and functional characteristics of microalgal biomass, promoting their use as sustainable, value-added ingredients in innovative plant-based foods. Full article
Show Figures

Graphical abstract

29 pages, 1115 KB  
Article
Influence of Lactation, Age and Foaling Factors on the Quality Composition, Fatty and Amino Acid Profile of Mare’s Milk Under Pasture Conditions
by Togzhan Boranbayeva, Zhanna Dossimova, Dulat Zhalelov, Aruzhan Zhunisbek, Ayazhan Bolat and Maxat Toishimanov
Foods 2025, 14(16), 2880; https://doi.org/10.3390/foods14162880 - 19 Aug 2025
Viewed by 331
Abstract
This study investigated the effects of lactation period, foaling month and number, mare age, and regional factors on the quality parameters, amino acid composition, fatty acid profile, and nutritional indices of Kazakh mare’s milk under pasture conditions. A total of 240 milk samples [...] Read more.
This study investigated the effects of lactation period, foaling month and number, mare age, and regional factors on the quality parameters, amino acid composition, fatty acid profile, and nutritional indices of Kazakh mare’s milk under pasture conditions. A total of 240 milk samples were collected from Almaty and Zhambyl regions during the summer and autumn lactation periods. Standard physicochemical analyses determined fat, protein, casein, TS, and SNF contents, while amino acids were quantified via HPLC and fatty acids by GC. Significant seasonal differences were observed: summer milk contained higher PUFA (18.29%) and n-3 (5.71%) levels and exhibited lower SFA and AI values, indicating superior nutritional quality. Milk from younger mares (4 to 6 years) showed elevated essential amino acids and better lipid health indices compared to older mares. Zhambyl region samples had higher unsaturated fatty acids and SNF, while Almaty milk exhibited higher SFA and casein content. Amino acid profiling revealed that summer milk was enriched in glutamic acid, aspartic acid, serine, and histidine, whereas autumn milk contained more valine, leucine, methionine, and cysteine. PCA revealed distinct clustering based on season, mare age, and foaling period, confirming their substantial roles in shaping milk composition. These findings highlight that mare age, lactation period, and foaling timing significantly affect the nutritional quality of the mare’s milk. These results provide valuable insights for optimizing milk production and kumys fermentation strategies under traditional pasture-based systems. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

21 pages, 1869 KB  
Article
Anti-Inflammatory Diet and Probiotic Supplementation as Strategies to Modulate Immune Dysregulation in Autism Spectrum Disorder
by Carlos Andrés Naranjo-Galvis, Diana María Trejos-Gallego, Cristina Correa-Salazar, Jessica Triviño-Valencia, Marysol Valencia-Buitrago, Andrés Felipe Ruiz-Pulecio, Luisa Fernanda Méndez-Ramírez, Jovanny Zabaleta, Miguel Andres Meñaca-Puentes, Carlos Alberto Ruiz-Villa, Marcela Orjuela-Rodriguez, Juan Carlos Carmona-Hernández and Luisa Matilde Salamanca-Duque
Nutrients 2025, 17(16), 2664; https://doi.org/10.3390/nu17162664 - 18 Aug 2025
Viewed by 902
Abstract
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with behavioral and cognitive impairments. Increasing evidence also links ASD with systemic immune dysregulation, including abnormal cytokine profiles and chronic low-grade inflammation. Emerging evidence suggests that targeted dietary strategies and probiotic supplementation [...] Read more.
Background/Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition associated with behavioral and cognitive impairments. Increasing evidence also links ASD with systemic immune dysregulation, including abnormal cytokine profiles and chronic low-grade inflammation. Emerging evidence suggests that targeted dietary strategies and probiotic supplementation may modulate immune responses and gut–brain interactions in patients with ASD. This study aimed to evaluate the immunomodulatory effects of a structured anti-inflammatory diet (NeuroGutPlus) compared to multi-strain probiotics in children with ASD. NeuroGutPlus is a nutritionally complete anti-inflammatory dietary protocol that targets gut integrity, inflammation, and mitochondrial function. It includes a diet low in gluten, FODMAPs, casein, and artificial additives, and a high intake of omega-3 fatty acids, polyphenols, and fermentable fibers. Methods: A total of 30 children with ASD and 12 neurotypical controls were enrolled in a 12-week randomized controlled nutritional trial. Participants received either a NeuroGutPlus anti-inflammatory diet, probiotic supplementation (16 strains of Lactobacillus and Bifidobacterium), or no intervention. Plasma levels of 20 cytokines and chemokines were measured pre- and post-intervention using multiplex Luminex immunoassays. Principal component analysis (PCA) was used to explore shifts in the immune profile. Results: Patients treated with the NeuroGutPlus diet significantly reduced IFN-γ levels (p = 0.0090) and showed a stabilizing effect on immune profiles, as evidenced by PCA clustering. Probiotic supplementation led to a significant increase in IL-8 (+66.6 pg/mL; p = 0.0350) and MIP-1β (+74.5 pg/mL; p = 0.0100), along with a decrease in IFN-γ (p = 0.0070), suggesting reconfiguration of innate immune responses. Eight out of eleven biomarkers showed significant post-intervention differences between groups, indicating distinct immunological effects. Conclusions: This study provides evidence that anti-inflammatory diets exert broader and more consistent immunoregulatory effects than probiotics alone in children with ASD. These findings support the inclusion of precision dietary strategies as non-pharmacological interventions to mitigate immune-related dysfunction in patients with ASD. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

20 pages, 3131 KB  
Article
Regional Variability in the Maximum Water Holding Capacity and Physicochemical Properties of Forest Floor Litter in Anatolian Black Pine (Pinus nigra J.F. Arnold) Stands in Türkiye
by Semih Ediş
Forests 2025, 16(8), 1337; https://doi.org/10.3390/f16081337 - 16 Aug 2025
Viewed by 268
Abstract
Forest litter plays a critical role in regulating the water balance of forest ecosystems, particularly in semi-arid regions where hydrological stability is under pressure due to climate change. This study investigates the maximum water holding capacity (MWHC) of litter layers across three ecologically [...] Read more.
Forest litter plays a critical role in regulating the water balance of forest ecosystems, particularly in semi-arid regions where hydrological stability is under pressure due to climate change. This study investigates the maximum water holding capacity (MWHC) of litter layers across three ecologically distinct regions in Türkiye—Kastamonu, Kütahya, and Muğla—to evaluate how structural and physicochemical characteristics influence the maximum water holding capacity (MWHC) of litter layers. Litter samples classified into humus, fermenting debris, and needles were analyzed for MWHC, pH, electrical conductivity (EC), and total dissolved solids (TDSs). The results revealed that both the type of litter and regional ecological conditions significantly affect MWHC, with humus layers and moist environments exhibiting the highest water holding capacity. Additionally, MWHC showed moderate positive correlations with EC and TDS, highlighting the importance of chemical composition in water dynamics. The findings underscore that forest litter should be regarded as a dynamic and functional hydrological component, not merely residual biomass. This perspective is vital for sustainable watershed planning and adaptive forest management. The study supports the development of integrated management strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 6 (Clean Water and Sanitation), SDG 13 (Climate Action), and SDG 15 (Life on Land). Full article
Show Figures

Figure 1

Back to TopTop