Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = feral honey bees

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3325 KiB  
Article
Earlier Morning Arrival to Pollen-Rewarding Flowers May Enable Feral Bumble Bees to Successfully Compete with Local Bee Species and Expand Their Distribution Range in a Mediterranean Habitat
by Noam Bar-Shai, Uzi Motro, Avishai Shmida and Guy Bloch
Insects 2022, 13(9), 816; https://doi.org/10.3390/insects13090816 - 7 Sep 2022
Cited by 4 | Viewed by 3247
Abstract
During recent decades, bumble bees (Bombus terrestris) have continuously expanded their range in the Mediterranean climate regions of Israel. To assess their potential effects on local bee communities, we monitored their diurnal and seasonal activity patterns, as well as those of [...] Read more.
During recent decades, bumble bees (Bombus terrestris) have continuously expanded their range in the Mediterranean climate regions of Israel. To assess their potential effects on local bee communities, we monitored their diurnal and seasonal activity patterns, as well as those of native bee species in the Judean Hills. We found that all bee species tend to visit pollen-providing flowers at earlier times compared to nectar-providing flowers. Bumble bees and honey bees start foraging at earlier times and colder temperatures compared to other species of bees. This means that the two species of commercially managed social bees are potentially depleting much of the pollen, which is typically non-replenished, before most local species arrive to gather it. Taking into consideration the long activity season of bumble bees in the Judean hills, their ability to forage at the low temperatures of the early morning, and their capacity to collect pollen at early hours in the dry Mediterranean climate, feral and range-expanding bumble bees potentially pose a significant competitive pressure on native bee fauna. Their effects on local bees can further modify pollination networks, and lead to changes in the local flora. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Modeling the Potential Global Distribution of Honeybee Pest, Galleria mellonella under Changing Climate
by Eslam M. Hosni, Areej A. Al-Khalaf, Mohamed G. Nasser, Hossam F. Abou-Shaara and Marwa H. Radwan
Insects 2022, 13(5), 484; https://doi.org/10.3390/insects13050484 - 22 May 2022
Cited by 34 | Viewed by 5133
Abstract
Beekeeping is essential for the global food supply, yet honeybee health and hive numbers are increasingly threatened by habitat alteration, climate change, agrochemical overuse, pathogens, diseases, and insect pests. However, pests and diseases that have unknown spatial distribution and influences are blamed for [...] Read more.
Beekeeping is essential for the global food supply, yet honeybee health and hive numbers are increasingly threatened by habitat alteration, climate change, agrochemical overuse, pathogens, diseases, and insect pests. However, pests and diseases that have unknown spatial distribution and influences are blamed for diminishing honeybee colonies over the world. The greater wax moth (GWM), Galleria mellonella, is a pervasive pest of the honeybee, Apis mellifera. It has an international distribution that causes severe loss to the beekeeping industry. The GWM larvae burrow into the edge of unsealed cells that have pollen, bee brood, and honey through to the midrib of the wax comb. Burrowing larvae leave behind masses of webs that cause honey to leak out and entangle emerging bees, resulting in death by starvation, a phenomenon called galleriasis. In this study, the maximum entropy algorithm implemented in (Maxent) model was used to predict the global spatial distribution of GWM throughout the world. Two representative concentration pathways (RCPs) 2.6 and 8.5 of three global climate models (GCMs), were used to forecast the global distribution of GWM in 2050 and 2070. The Maxent models for GWM provided a high value of the Area Under Curve equal to 0.8 ± 0.001, which was a satisfactory result. Furthermore, True Skilled Statistics assured the perfection of the resultant models with a value equal to 0.7. These values indicated a significant correlation between the models and the ecology of the pest species. The models also showed a very high habitat suitability for the GWM in hot-spot honey exporting and importing countries. Furthermore, we extrapolated the economic impact of such pests in both feral and wild honeybee populations and consequently the global market of the honeybee industry. Full article
(This article belongs to the Special Issue Climate Change and Insects)
Show Figures

Figure 1

17 pages, 6475 KiB  
Article
Unprecedented Density and Persistence of Feral Honey Bees in Urban Environments of a Large SE-European City (Belgrade, Serbia)
by Jovana Bila Dubaić, Slađan Simonović, Milan Plećaš, Ljubiša Stanisavljević, Slobodan Davidović, Marija Tanasković and Aleksandar Ćetković
Insects 2021, 12(12), 1127; https://doi.org/10.3390/insects12121127 - 16 Dec 2021
Cited by 22 | Viewed by 7707
Abstract
It is assumed that wild honey bees have become largely extinct across Europe since the 1980s, following the introduction of exotic ectoparasitic mite (Varroa) and the associated spillover of various pathogens. However, several recent studies reported on unmanaged colonies that survived [...] Read more.
It is assumed that wild honey bees have become largely extinct across Europe since the 1980s, following the introduction of exotic ectoparasitic mite (Varroa) and the associated spillover of various pathogens. However, several recent studies reported on unmanaged colonies that survived the Varroa mite infestation. Herewith, we present another case of unmanaged, free-living population of honey bees in SE Europe, a rare case of feral bees inhabiting a large and highly populated urban area: Belgrade, the capital of Serbia. We compiled a massive data-set derived from opportunistic citizen science (>1300 records) during the 2011–2017 period and investigated whether these honey bee colonies and the high incidence of swarms could be a result of a stable, self-sustaining feral population (i.e., not of regular inflow of swarms escaping from local managed apiaries), and discussed various explanations for its existence. We also present the possibilities and challenges associated with the detection and effective monitoring of feral/wild honey bees in urban settings, and the role of citizen science in such endeavors. Our results will underpin ongoing initiatives to better understand and support naturally selected resistance mechanisms against the Varroa mite, which should contribute to alleviating current threats and risks to global apiculture and food production security. Full article
Show Figures

Figure 1

42 pages, 584 KiB  
Review
Impact of Biotic and Abiotic Stressors on Managed and Feral Bees
by Joseph Belsky and Neelendra K. Joshi
Insects 2019, 10(8), 233; https://doi.org/10.3390/insects10080233 - 1 Aug 2019
Cited by 97 | Viewed by 10976
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent [...] Read more.
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed. Full article
17 pages, 890 KiB  
Review
The Biology and Control of the Greater Wax Moth, Galleria mellonella
by Charles A. Kwadha, George O. Ong’amo, Paul N. Ndegwa, Suresh K. Raina and Ayuka T. Fombong
Insects 2017, 8(2), 61; https://doi.org/10.3390/insects8020061 - 9 Jun 2017
Cited by 228 | Viewed by 30731
Abstract
The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to [...] Read more.
The greater wax moth, Galleria mellonella Linnaeus, is a ubiquitous pest of the honeybee, Apis mellifera Linnaeus, and Apis cerana Fabricius. The greater wax moth larvae burrow into the edge of unsealed cells with pollen, bee brood, and honey through to the midrib of honeybee comb. Burrowing larvae leave behind masses of webs which causes galleriasis and later absconding of colonies. The damage caused by G. mellonella larvae is severe in tropical and sub-tropical regions, and is believed to be one of the contributing factors to the decline in both feral and wild honeybee populations. Previously, the pest was considered a nuisance in honeybee colonies, therefore, most studies have focused on the pest as a model for in vivo studies of toxicology and pathogenicity. It is currently widespread, especially in Africa, and the potential of transmitting honeybee viruses has raised legitimate concern, thus, there is need for more studies to find sustainable integrated management strategies. However, our knowledge of this pest is limited. This review provides an overview of the current knowledge on the biology, distribution, economic damage, and management options. In addition, we provide prospects that need consideration for better understanding and management of the pest. Full article
(This article belongs to the Special Issue Integrated Pest Management)
Show Figures

Figure 1

14 pages, 849 KiB  
Article
Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes
by R. Holden Appler, Steven D. Frank and David R. Tarpy
Insects 2015, 6(4), 912-925; https://doi.org/10.3390/insects6040912 - 29 Oct 2015
Cited by 16 | Viewed by 6726
Abstract
Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from [...] Read more.
Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health. Full article
Show Figures

Graphical abstract

Back to TopTop