Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = femtosecond laser-based linear scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 15510 KB  
Article
Effect of Femtosecond Laser Processing Parameters on the Ablation Microgrooves of RB-SiC Composites
by Feng Yang, Renke Kang, Hongbin Ma, Guangyi Ma, Dongjiang Wu and Zhigang Dong
Materials 2023, 16(6), 2536; https://doi.org/10.3390/ma16062536 - 22 Mar 2023
Cited by 8 | Viewed by 4910
Abstract
Because of the high hardness, brittleness, and anisotropy of reaction-bonded silicon carbide composites (RB-SiC), it is challenging to process high-quality textures on their surfaces. With the advantages of high processing accuracy and low processing damage, femtosecond laser processing is the preferred technology for [...] Read more.
Because of the high hardness, brittleness, and anisotropy of reaction-bonded silicon carbide composites (RB-SiC), it is challenging to process high-quality textures on their surfaces. With the advantages of high processing accuracy and low processing damage, femtosecond laser processing is the preferred technology for the precision processing of difficult-to-process materials. The present work used a femtosecond laser with a linear scanning path and a spot diameter of 18 µm to process microgrooves on RB-SiC. The influence of different processing parameters on the microgroove profile, dimensions, and ablation rate (AR) was investigated. The ablation width Wa and average ablation depth Da of microgrooves were evaluated, and the various patterns of varying processing parameters were obtained. A model for Wa prediction was developed based on the laser fluence within the finite length (FL). As a result, the experimental values were distributed near the prediction curve with a maximum error of 20.4%, showing an upward trend of gradually decreasing increments. For a single pass, the AR value was mainly determined by the laser energy, which could reach the scale of 106 μm3/s when the laser energy was greater than 50 μJ. For multiple passes, the AR value decreased as the number of passes increased and it finally stabilized. The above research will provide theoretical and experimental support for the high-quality and efficient processing of RB-SiC surface textures. Full article
Show Figures

Figure 1

11 pages, 4959 KB  
Communication
Femtosecond Laser-Based Micromachining of Rotational-Symmetric Sapphire Workpieces
by Stefan Kefer, Julian Zettl, Cemal Esen and Ralf Hellmann
Materials 2022, 15(18), 6233; https://doi.org/10.3390/ma15186233 - 8 Sep 2022
Cited by 7 | Viewed by 2741
Abstract
Sapphire is a robust and wear-resistant material. However, efficient and high-quality micromachining is still a challenge. This contribution demonstrates and discusses two novels, previously unreported approaches for femtosecond laser-based micromachining of rotational-symmetric sapphire workpieces, whereas both methods are in principal hybrids of laser [...] Read more.
Sapphire is a robust and wear-resistant material. However, efficient and high-quality micromachining is still a challenge. This contribution demonstrates and discusses two novels, previously unreported approaches for femtosecond laser-based micromachining of rotational-symmetric sapphire workpieces, whereas both methods are in principal hybrids of laser scanning and laser turning or laser lathe. The first process, a combination of a sequential linear hatch pattern in parallel to the workpiece’s main axis with a defined incremental workpiece rotation, enables the fabrication of sapphire fibers with diameters of 50 μm over a length of 4.5 mm. Furthermore, sapphire specimens with a diameter of 25 μm over a length of 2 mm can be fabricated whereas an arithmetical mean height, i.e., Sa parameter, of 281 nm is achieved. The second process combines a constant workpiece feed and orthogonal scanning with incremental workpiece rotation. With this approach, workpiece length limitations of the first process are overcome and sapphire fibers with an average diameter of 90 µm over a length of 20 cm are manufactured. Again, the sapphire specimen exhibits a comparable surface roughness with an average Sa value of 249 nm over 20 cm. Based on the obtained results, the proposed manufacturing method paves an innovative and flexible, all laser-based way towards the fabrication or microstructuring of sapphire optical devices, and thus, a promising alternative to chemical processes. Full article
(This article belongs to the Special Issue Advances in Laser Processing)
Show Figures

Figure 1

9 pages, 1740 KB  
Article
Femtosecond Laser Fabrication of Submillimeter Microlens Arrays with Tunable Numerical Apertures
by Tongzhen Yang, Minjing Li, Qing Yang, Yu Lu, Yang Cheng, Chengjun Zhang, Bing Du, Xun Hou and Feng Chen
Micromachines 2022, 13(8), 1297; https://doi.org/10.3390/mi13081297 - 12 Aug 2022
Cited by 9 | Viewed by 3209
Abstract
In recent years, the demand for optical components such as microlenses has been increasing, and various methods have been developed. However, fabrication of submillimeter microlenses with tunable numerical aperture (NA) on hard and brittle materials remains a great challenge using the current methods. [...] Read more.
In recent years, the demand for optical components such as microlenses has been increasing, and various methods have been developed. However, fabrication of submillimeter microlenses with tunable numerical aperture (NA) on hard and brittle materials remains a great challenge using the current methods. In this work, we fabricated a variable NA microlens array with submillimeter size on a silica substrate, using a femtosecond laser-based linear scanning-assisted wet etching method. At the same time, the influence of various processing parameters on the microlens morphology and NA was studied. The NA of the microlenses could be flexibly adjusted in the range of 0.2 to 0.45 by changing the scanning distance of the laser and assisted wet etching. In addition, the imaging and focusing performance tests demonstrated the good optical performance and controllability of the fabricated microlenses. Finally, the optical performance simulation of the prepared microlens array was carried out. The result was consistent with the actual situation, indicating the potential of the submillimeter-scale microlens array prepared by this method for applications in imaging and detection. Full article
(This article belongs to the Special Issue Laser Bionic Fabrication)
Show Figures

Figure 1

12 pages, 4662 KB  
Article
Analytical Model for the Depth Progress during Laser Micromachining of V-Shaped Grooves
by Daniel Holder, Rudolf Weber and Thomas Graf
Micromachines 2022, 13(6), 870; https://doi.org/10.3390/mi13060870 - 31 May 2022
Cited by 18 | Viewed by 3484
Abstract
An analytical model is presented that allows predicting the progress and the final depth obtained by laser micromachining of grooves in metals with ultrashort laser pulses. The model assumes that micromachined grooves feature a V-shaped geometry and that the fluence absorbed along the [...] Read more.
An analytical model is presented that allows predicting the progress and the final depth obtained by laser micromachining of grooves in metals with ultrashort laser pulses. The model assumes that micromachined grooves feature a V-shaped geometry and that the fluence absorbed along the walls is distributed with a linear increase from the edge to the tip of the groove. The depth progress of the processed groove is recursively calculated based on the depth increments induced by successive scans of the laser beam along the groove. The experimental validation confirms the model and its assumptions for micromachining of grooves in a Ti-alloy with femtosecond pulses and different pulse energies, repetition rates, scanning speeds and number of scans. Full article
(This article belongs to the Special Issue Laser Micromachining)
Show Figures

Graphical abstract

13 pages, 9268 KB  
Article
On the Role of a ZDDP in the Tribological Performance of Femtosecond Laser-Induced Periodic Surface Structures on Titanium Alloy against Different Counterbody Materials
by Jon Joseba Ayerdi, Nadine Slachciak, Iñigo Llavori, Alaitz Zabala, Andrea Aginagalde, Jörn Bonse and Dirk Spaltmann
Lubricants 2019, 7(9), 79; https://doi.org/10.3390/lubricants7090079 - 3 Sep 2019
Cited by 13 | Viewed by 4416
Abstract
Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls [...] Read more.
Laser-induced periodic surface structures (LIPSS, ripples) with ~500–700 nm period were produced on titanium alloy (Ti6Al4V) surfaces upon scan processing in air by a Ti:sapphire femtosecond laser. The tribological performance of the surfaces were qualified in linear reciprocating sliding tribological tests against balls made of different materials using different oil-based lubricants. The corresponding wear tracks were characterized by optical and scanning electron microscopy and confocal profilometry. Extending our previous work, we studied the admixture of the additive 2-ethylhexyl-zinc-dithiophosphate to a base oil containing only anti-oxidants and temperature stabilizers. The presence of this additive along with the variation of the chemical composition of the counterbodies allows us to explore the synergy of the additive with the laser-oxidized nanostructures. Full article
Show Figures

Graphical abstract

9 pages, 2721 KB  
Article
Picoliter Cuvette inside an Optical Fiber to Track Gold Nanoparticle Aggregation for Measurement of Biomolecules
by Masahiko Shiraishi, Kazuhiro Watanabe and Shoichi Kubodera
Sensors 2019, 19(13), 2859; https://doi.org/10.3390/s19132859 - 27 Jun 2019
Cited by 1 | Viewed by 3764
Abstract
This study demonstrated a measurement approach for biomolecules at the picoliter scale, using a newly developed picoliter cuvette inside an optical fiber constructed via near-ultraviolet femtosecond laser drilling. The sensing capacity was estimated to be within 0.4–1.2 pL due to an optical path [...] Read more.
This study demonstrated a measurement approach for biomolecules at the picoliter scale, using a newly developed picoliter cuvette inside an optical fiber constructed via near-ultraviolet femtosecond laser drilling. The sensing capacity was estimated to be within 0.4–1.2 pL due to an optical path length of 3–5 microns, as measured by scanning electron microscopy (SEM). The picoliter cuvette exhibited a change in the optical extinction spectrum after addition of biomolecules such as L-cysteine, in conjunction with a gold nanoparticle (GNP) dispersion solution, following a simple measurement configuration involving a small white light source and a compact spectrometer. A linear attenuation of the spectral dip near a wavelength of 520 nm was observed as the L-cysteine concentration was increased at 4 wt% of the GNP mass concentration. The measurement resolution of the concentration using the picoliter cuvette was evaluated at 0.125 mM. The experimental results showed the difference in aggregation processes caused by a different concentration of GNPs. Moreover, they revealed the ability of the picoliter cuvette to verify whether the concentration of GNPs in the liquid sample correspondingly determines homogeneous or inhomogeneous GNP aggregation, as supported by SEM observation and numerical calculations based on Mie theory. Full article
(This article belongs to the Special Issue Optical Fiber Sensors 2018–2019)
Show Figures

Figure 1

Back to TopTop