Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = femtosecond laser annealing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2529 KiB  
Article
Selective DUV Femtosecond Laser Annealing for Electrical Property Modulation in NMOS Inverter
by Joo Hyun Jeong, Won Woo Lee, Sang Jik Kwon, Min-Kyu Park and Eou-Sik Cho
Nanomaterials 2025, 15(16), 1247; https://doi.org/10.3390/nano15161247 - 14 Aug 2025
Viewed by 237
Abstract
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high [...] Read more.
Amorphous indium gallium zinc oxide (a-IGZO) is widely used as an oxide semiconductor in the electronics industry due to its low leakage current and high field-effect mobility. However, a-IGZO suffers from notable limitations, including crystallization at temperatures above 600 °C and the high cost of indium. To address these issues, nitrogen-doped zinc oxynitride (ZnON), which can be processed at room temperature, has been proposed. Nitrogen in ZnON effectively reduces oxygen vacancies (VO), resulting in enhanced field-effect mobility and improved stability under positive bias stress (PBS) compared to IGZO. In this study, selective deep ultraviolet femtosecond (DUV fs) laser annealing was applied to the channel region of ZnON thin-film transistors (TFTs), enabling rapid threshold voltage (Vth) modulation within microseconds, without the need for vacuum processing. Based on the electrical characteristics of both Vth-modulated and pristine ZnON TFTs, an NMOS inverter was fabricated, demonstrating reliable performance. These results suggest that laser annealing is a promising technique, applicable to various logic circuits and electronic devices. Full article
Show Figures

Figure 1

13 pages, 2727 KiB  
Article
Spectral and Microscopic Behavior of Type III Femtosecond Fiber Bragg Gratings at High Temperatures
by Matilde Sosa, Maxime Cavillon, Thomas Blanchet, Matthieu Lancry and Guillaume Laffont
Micromachines 2025, 16(3), 331; https://doi.org/10.3390/mi16030331 - 12 Mar 2025
Viewed by 785
Abstract
Fiber Bragg gratings are key components for optical fiber sensing applications in harsh environments. Microvoids, or so-called type III fiber Bragg gratings, fabricated using femtosecond lasers and the point-by-point technique, were characterized at high temperatures (>1100 °C). For this purpose, we monitored the [...] Read more.
Fiber Bragg gratings are key components for optical fiber sensing applications in harsh environments. Microvoids, or so-called type III fiber Bragg gratings, fabricated using femtosecond lasers and the point-by-point technique, were characterized at high temperatures (>1100 °C). For this purpose, we monitored the spectral characteristics of the grating, as well as the evolution of the microstructure during a 30 min isochronal annealing process. This study allowed us to correlate the behavior of the microvoids with the spectral performances (amplitude, wavelength drift) of the sensors at very high temperatures. As the grating signal is being lost at increasing temperatures (above 1125 °C), the periodic array of microvoids becomes disordered and deformed, ultimately losing its periodic spacing. Full article
(This article belongs to the Special Issue Fiber-Optic Technologies for Communication and Sensing)
Show Figures

Figure 1

16 pages, 7263 KiB  
Article
Inscription and Thermal Stability of Fiber Bragg Gratings in Hydrogen-Loaded Optical Fibers Using a 266 nm Pulsed Laser
by Xiangxi Zhu, Zixuan Xin, Haoming Zhu, Hongye Wang, Xin Cheng, Hwa-Yaw Tam, Hang Qu and Xuehao Hu
Photonics 2024, 11(11), 1092; https://doi.org/10.3390/photonics11111092 - 20 Nov 2024
Viewed by 1820
Abstract
Fiber Bragg gratings (FBGs) have gained substantial research interest due to their exceptional sensing capabilities. Traditionally, FBG fabrication has required the use of pre-hydrogenated fibers and high-cost laser systems such as excimer lasers at 193 nm or femtosecond lasers. In this study, we [...] Read more.
Fiber Bragg gratings (FBGs) have gained substantial research interest due to their exceptional sensing capabilities. Traditionally, FBG fabrication has required the use of pre-hydrogenated fibers and high-cost laser systems such as excimer lasers at 193 nm or femtosecond lasers. In this study, we present the first instance of FBG inscription in hydrogen-loaded, standard single-mode silica optical fibers using a more affordable 266 nm solid-state pulsed laser combined with a scanning phase mask lithography technique. We systematically explored the effects of pulse energy and scanning speed on the quality and spectral characteristics of the gratings, achieving reflectivities as high as 99.81%. Additionally, we tracked the spectral evolution during the FBG inscription process, demonstrating uniform growth of the core mode. We also investigated the stability of the core mode during a 24-h thermal annealing process up to 150 °C. The sensitivity was 10.7 pm/°C in the range of 0 to 130 °C. Furthermore, strain measurement was conducted based on the FBG annealed at 100 °C, showing a sensitivity of 0.943 pm/µε in the range of 0 to 1667 µε. Full article
Show Figures

Figure 1

10 pages, 2334 KiB  
Article
Micro-to-Nanoscale Characterization of Femtosecond Laser Photo-Inscribed Microvoids
by Matilde Sosa, Maxime Cavillon, Thomas Blanchet, Gergely Nemeth, Ferenc Borondics, Guillaume Laffont and Matthieu Lancry
Nanomaterials 2024, 14(14), 1228; https://doi.org/10.3390/nano14141228 - 20 Jul 2024
Cited by 5 | Viewed by 1694
Abstract
Fiber Bragg gratings are key components for optical fiber sensing applications in harsh environments. This paper investigates the structural and chemical characteristics of femtosecond laser photo-inscribed microvoids. These voids are at the base of type III fs-gratings consisting of a periodic array of [...] Read more.
Fiber Bragg gratings are key components for optical fiber sensing applications in harsh environments. This paper investigates the structural and chemical characteristics of femtosecond laser photo-inscribed microvoids. These voids are at the base of type III fs-gratings consisting of a periodic array of microvoids inscribed at the core of an optical fiber. Using high-resolution techniques such as quantitative phase microscopy, electron transmission microscopy, and scattering-type scanning near-field IR optical microscopy, we examined the structure of the microvoids and the densified shells around them. We also investigated the high-temperature behavior of the voids, revealing their evolution in size and shape under step isochronal annealing conditions up to 1250 °C. Full article
(This article belongs to the Special Issue Advanced Manufacturing on Nano- and Microscale)
Show Figures

Figure 1

23 pages, 6688 KiB  
Article
How to Crystallize Glass with a Femtosecond Laser
by Ruyue Que, Matthieu Lancry, Maxime Cavillon and Bertrand Poumellec
Crystals 2024, 14(7), 606; https://doi.org/10.3390/cryst14070606 - 30 Jun 2024
Cited by 3 | Viewed by 1587
Abstract
The crystallization of glass through conventional thermal annealing in a furnace is a well-understood process. However, crystallization by femtosecond (fs) laser brings another dimension to this process. The pulsed nature of the irradiation necessitates a reevaluation of the parameters for optimal crystallization and [...] Read more.
The crystallization of glass through conventional thermal annealing in a furnace is a well-understood process. However, crystallization by femtosecond (fs) laser brings another dimension to this process. The pulsed nature of the irradiation necessitates a reevaluation of the parameters for optimal crystallization and an understanding of the particularities of using fs laser. This includes adjusting the laser pulse energy, the repetition rate, and the writing speed to either initiate nucleation or achieve substantial crystal growth. Therefore, a key challenge of this work is to establish reliable calculations for understanding the link between the size of the crystallized region and an ongoing transition (e.g., solid-to-solid, liquid-to-solid), while accounting for the aforementioned laser parameters. In this context, and based on previous work, a temperature distribution (in space and time) is simulated to model the thermal treatment at any point in the glass. By setting the condition that the temperatures are between the glass transition and melting temperature, the simulated crystallized region size can be compared with experimental observations. For that purpose, knowledge of the beam width at the focal point and of the absorbed beam energy fraction are critical inputs that were extracted from experiments found in the literature. After that, the management of the crystallization process and the width of the crystallization line can be achieved according to pulse energy, e.g., crystallite size, and also the effect of the scanning speed can be understood. Among the main conclusions to highlight, we disclose the laser conditions that determine the extent of the crystallized area and deduce that it is never of interest to increase the pulse energy too much as opposed to the repetition rate for the uniform crystallized line. Full article
(This article belongs to the Special Issue Laser–Material Interaction: Principles, Phenomena, and Applications)
Show Figures

Figure 1

14 pages, 2956 KiB  
Article
Rapid Fabrication of Tungsten Oxide-Based Electrochromic Devices through Femtosecond Laser Processing
by Liqun Wang, Zihao Zhai and Longnan Li
Micromachines 2024, 15(6), 785; https://doi.org/10.3390/mi15060785 - 14 Jun 2024
Viewed by 1429
Abstract
The sol-gel method is a widely adopted technique for the preparation of tungsten trioxide (WO3) materials, favored for its cost-effectiveness and straightforward production procedures. However, this method encounters challenges such as prolonged annealing periods and limited flexibility in fabricating patterned WO [...] Read more.
The sol-gel method is a widely adopted technique for the preparation of tungsten trioxide (WO3) materials, favored for its cost-effectiveness and straightforward production procedures. However, this method encounters challenges such as prolonged annealing periods and limited flexibility in fabricating patterned WO3 films. This study introduces a novel approach that integrates femtosecond laser processing with the sol-gel method to enhance the fabrication of WO3 films. By adjusting polyvinylpyrrolidone (PVP) concentrations during sol-gel synthesis, precise control over film thickness and optimized film properties were achieved. The innovative technique significantly reduced the annealing time required to achieve an 80% transmittance rate from 90 min to 40 min, marking a 56% decrease. Laser processing increased the surface roughness of the films from Sa = 0.032 to Sa = 0.119, facilitating enhanced volatilization of organics during heat treatment. Additionally, this method improved the transmittance modulation of the films by 22% at 550 nm compared to unprocessed counterparts. This approach not only simplifies the manufacturing process but also enhances the optical efficiency of electrochromic devices, potentially leading to broader applications and more effective energy conservation strategies. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators)
Show Figures

Figure 1

14 pages, 5360 KiB  
Article
Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates
by Yuzhu Cheng, Alexander V. Bulgakov, Nadezhda M. Bulgakova, Jiří Beránek, Martin Zukerstein, Ilya A. Milekhin, Alexander A. Popov and Vladimir A. Volodin
Micromachines 2023, 14(11), 2048; https://doi.org/10.3390/mi14112048 - 31 Oct 2023
Cited by 5 | Viewed by 2061
Abstract
Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm2 under single-shot [...] Read more.
Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm2 under single-shot and multishot conditions was investigated using Raman spectroscopy. The dependence of the fraction of the crystalline phase on the fluence was obtained for picosecond and femtosecond laser annealing. The regimes of almost complete crystallization of germanium films over the entire thickness were obtained (from the analysis of Raman spectra with excitation of 785 nm laser). The possibility of scanning laser processing is shown, which can be used to create films of micro- and nanocrystalline germanium on flexible substrates. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication)
Show Figures

Figure 1

11 pages, 3869 KiB  
Article
Through-The-Coating Fabrication of Fiber Bragg Grating Relative Humidity Sensors Using Femtosecond Pulse Duration Infrared Lasers and a Phase Mask
by Stephen J. Mihailov, Huimin Ding, Cyril Hnatovsky, Robert B. Walker, Ping Lu and Manny De Silva
Photonics 2023, 10(6), 625; https://doi.org/10.3390/photonics10060625 - 29 May 2023
Cited by 15 | Viewed by 2367
Abstract
Fiber Bragg grating (FBG) relative humidity (RH) sensors are fabricated in commercially available polyimide (PI)-coated optical fibers with diameters of 50 and 125 μm. Infrared (800 nm) femtosecond pulse duration laser pulses and a phase mask are used to inscribe Type-I and Type-II [...] Read more.
Fiber Bragg grating (FBG) relative humidity (RH) sensors are fabricated in commercially available polyimide (PI)-coated optical fibers with diameters of 50 and 125 μm. Infrared (800 nm) femtosecond pulse duration laser pulses and a phase mask are used to inscribe Type-I and Type-II FBGs directly through the protective polyimide coatings of both 50 and 125 μm diameter fibers without typical fiber processing such as hydrogen loading, cryogenic storage, stripping, recoating or annealing. The devices are then evaluated for their performance as humidity sensors. At telecom wavelengths, the 50 μm diameter fiber devices with a 10 μm thick PI coating had a wavelength shift of the Bragg resonance at a constant temperature of 2.7 pm/%RH, whereas the 125 μm diameter fiber devices with a 17 μm thick PI coating had a wavelength shift of 1.8 pm/%RH. The humidity sensors in the 50 µm diameter fiber demonstrated a more rapid response time to small changes in humidity and a weaker hysteresis when compared to the 125 µm diameter fiber devices. No modification to the PI coatings was observed during fabrication. No difference in RH sensitivity was observed for Type-I devices when compared with Type-II devices with the same fiber. The applicability of this approach for fabricating distributed RH sensing arrays with hundreds of sensing elements on a single fiber is discussed. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

11 pages, 6235 KiB  
Communication
Crystalline Flat Surface Recovered by High-Temperature Annealing after Laser Ablation
by Daniel Smith, Soon Hock Ng, Amanda Tang, Tomas Katkus, Daniel Moraru and Saulius Juodkazis
Photonics 2023, 10(5), 594; https://doi.org/10.3390/photonics10050594 - 19 May 2023
Cited by 3 | Viewed by 2149
Abstract
Ultra-short laser pulses (1030 nm/230 fs) were used to laser ablate the surface of crystalline sapphire (Al2O3) at high intensity per pulse 20–200 TW/cm2/pulse. Laser-ablated patterns were annealed at a high temperature of 1500 °C. Surface [...] Read more.
Ultra-short laser pulses (1030 nm/230 fs) were used to laser ablate the surface of crystalline sapphire (Al2O3) at high intensity per pulse 20–200 TW/cm2/pulse. Laser-ablated patterns were annealed at a high temperature of 1500 °C. Surface reconstruction took place, removing the ablation debris field at the edges of ablated pits in oxygen flow (O2 flow). Partial reconstruction of ripples was also observed when multi-pulse ablated surfaces were annealed at high temperature in O2 flow. Back-side ablation of a 0.5-mm-thick Al2O3 produced high surface roughness ∼1μm which was reduced to ∼0.2μm by high-temperature annealing at 1500 °C for 2 h in O2. Improvement of surface quality was due to restructuring of the crystalline surface and sublimation, while the defined 3D shape of a micro-lens was not altered after HTA (no thermal morphing). Full article
(This article belongs to the Special Issue Research in Computational Optics)
Show Figures

Figure 1

12 pages, 11281 KiB  
Article
Ultrafast Infrared Laser Crystallization of Amorphous Si/Ge Multilayer Structures
by Alexander V. Bulgakov, Jiří Beránek, Vladimir A. Volodin, Yuzhu Cheng, Yoann Levy, Siva S. Nagisetty, Martin Zukerstein, Alexander A. Popov and Nadezhda M. Bulgakova
Materials 2023, 16(9), 3572; https://doi.org/10.3390/ma16093572 - 6 May 2023
Cited by 4 | Viewed by 2689
Abstract
Silicon–germanium multilayer structures consisting of alternating Si and Ge amorphous nanolayers were annealed by ultrashort laser pulses at near-infrared (1030 nm) and mid-infrared (1500 nm) wavelengths. In this paper, we investigate the effects of the type of substrate (Si or glass), and the [...] Read more.
Silicon–germanium multilayer structures consisting of alternating Si and Ge amorphous nanolayers were annealed by ultrashort laser pulses at near-infrared (1030 nm) and mid-infrared (1500 nm) wavelengths. In this paper, we investigate the effects of the type of substrate (Si or glass), and the number of laser pulses (single-shot and multi-shot regimes) on the crystallization of the layers. Based on structural Raman spectroscopy analysis, several annealing regimes were revealed depending on laser fluence, including partial or complete crystallization of the components and formation of solid Si–Ge alloys. Conditions for selective crystallization of germanium when Si remains amorphous and there is no intermixing between the Si and Ge layers were found. Femtosecond mid-IR laser annealing appeared to be particularly favorable for such selective crystallization. Similar crystallization regimes were observed for both single-shot and multi-shot conditions, although at lower fluences and with a lower selectivity in the latter case. A theoretical analysis was carried out based on the laser energy absorption mechanisms, thermal stresses, and non-thermal effects. Full article
(This article belongs to the Special Issue Advances in Laser Materials and Processing Technologies)
Show Figures

Figure 1

12 pages, 6439 KiB  
Article
Ultrafast-Laser-Induced Tailoring of Crystal-in-Glass Waveguides by Precision Partial Remelting
by Alexey S. Lipatiev, Sergey V. Lotarev, Tatiana O. Lipateva, Sergey S. Fedotov, Elena V. Lopatina and Vladimir N. Sigaev
Micromachines 2023, 14(4), 801; https://doi.org/10.3390/mi14040801 - 31 Mar 2023
Cited by 3 | Viewed by 2580
Abstract
Space-selective laser-induced crystallization of glass enables direct femtosecond laser writing of crystal-in-glass channel waveguides having nearly single-crystal structure and consisting of functional phases with favorable nonlinear optical or electrooptical properties. They are regarded as promising components for novel integrated optical circuits. However, femtosecond-laser-written [...] Read more.
Space-selective laser-induced crystallization of glass enables direct femtosecond laser writing of crystal-in-glass channel waveguides having nearly single-crystal structure and consisting of functional phases with favorable nonlinear optical or electrooptical properties. They are regarded as promising components for novel integrated optical circuits. However, femtosecond-laser-written continuous crystalline tracks typically have an asymmetric and strongly elongated cross-section, which causes a multimode character of light guiding and substantial coupling losses. Here, we investigated the conditions of partial remelting of laser-written LaBGeO5 crystalline tracks in lanthanum borogermanate glass by the same femtosecond laser beam which had been used for their writing. Exposure to femtosecond laser pulses at 200 kHz repetition rate provided cumulative heating of the sample in the vicinity of the beam waist sufficient to provide space-selective melting of crystalline LaBGeO5. To form a smoother temperature field, the beam waist was moved along the helical or flat sinusoidal path along the track. The sinusoidal path was shown to be favorable for tailoring the improved cross-section of the crystalline lines by partial remelting. At optimized laser processing parameters, most of the track was vitrified, and the residual part of the crystalline cross-section had an aspect ratio of about 1:1. Thermal-induced stress emerging during the tailoring procedure was efficiently eliminated by fine post-annealing. The proposed technique suggests a new way to control the morphology of laser-written crystal-in-glass waveguides by tailoring their cross-section, which is expected to improve the mode structure of the guided light. Full article
(This article belongs to the Special Issue Manufacturing Methods or Processing Methods in Micromachines)
Show Figures

Figure 1

13 pages, 4909 KiB  
Article
Femtosecond Laser Processing Assisted SiC High-Temperature Pressure Sensor Fabrication and Performance Test
by You Zhao, Yulong Zhao, Lukang Wang, Yu Yang and Yabing Wang
Micromachines 2023, 14(3), 587; https://doi.org/10.3390/mi14030587 - 28 Feb 2023
Cited by 7 | Viewed by 2582
Abstract
Due to material plastic deformation and current leakage at high temperatures, SOI (silicon-on-insulator) and SOS (silicon-on-sapphire) pressure sensors have difficulty working over 500 °C. Silicon carbide (SiC) is a promising sensor material to solve this problem because of its stable mechanical and electrical [...] Read more.
Due to material plastic deformation and current leakage at high temperatures, SOI (silicon-on-insulator) and SOS (silicon-on-sapphire) pressure sensors have difficulty working over 500 °C. Silicon carbide (SiC) is a promising sensor material to solve this problem because of its stable mechanical and electrical properties at high temperatures. However, SiC is difficult to process which hinders its application as a high-temperature pressure sensor. This study proposes a piezoresistive SiC pressure sensor fabrication method to overcome the difficulties in SiC processing, especially deep etching. The sensor was processed by a combination of ICP (inductive coupled plasma) dry etching, high-temperature rapid annealing and femtosecond laser deep etching. Static and dynamic calibration tests show that the accuracy error of the fabricated sensor can reach 0.33%FS, and the dynamic signal response time is 1.2 μs. High and low temperature test results show that the developed sensor is able to work at temperatures from −50 °C to 600 °C, which demonstrates the feasibility of the proposed sensor fabrication method. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

11 pages, 3930 KiB  
Article
Effect of Laser Pulse Width and Intensity Distribution on the Crystallographic Characteristics of GeSn Film
by Xiaomeng Wang, Dongfeng Qi, Wenju Zhou, Haotian Deng, Yuhan Liu, Shiyong Shangguan, Jianguo Zhang, Hongyu Zheng and Xueyun Liu
Coatings 2023, 13(2), 453; https://doi.org/10.3390/coatings13020453 - 16 Feb 2023
Cited by 3 | Viewed by 2262
Abstract
Germanium-tin (GeSn) alloy is considered a promising candidate for a Si-based short-wavelength infrared range (SWIR) detector and laser source due to its excellent carrier mobility and bandgap tunability. Pulsed laser annealing (PLA) is one of the preeminent methods for preparing GeSn crystal films [...] Read more.
Germanium-tin (GeSn) alloy is considered a promising candidate for a Si-based short-wavelength infrared range (SWIR) detector and laser source due to its excellent carrier mobility and bandgap tunability. Pulsed laser annealing (PLA) is one of the preeminent methods for preparing GeSn crystal films with high Sn content. However, current reports have not systematically investigated the effect of different pulse-width lasers on the crystalline quality of GeSn films. In addition, the intensity of the spot follows the gaussian distribution. As a result, various regions would have different crystalline properties. Therefore, in this study, we first provide the Raman spectra of several feature regions in the ablation state for single spot processing with various pulse-width lasers (continuous-wave, nanosecond, femtosecond). Furthermore, the impact of laser pulse width on the crystallization characteristics of GeSn film is explored for different single-spot processing states, particularly the Sn content incorporated into GeSn crystals. The transient heating time of the film surface and the faster non-equilibrium transition of the surface temperature inhibit the segregation of the Sn component. By comparing the Raman spectra of the pulsed laser, the continuous-wave laser shows the most acute Sn segregation phenomenon, with the lowest Sn content of approximately 2%. However, the femtosecond laser both ensures crystallization of the film and effective suppression of Sn expulsion from the lattices, and the content of Sn is 8.07%, which is similar to the origin of GeSn film. Full article
(This article belongs to the Special Issue Advanced Coating Materials for Energy Storage and Conversion)
Show Figures

Figure 1

14 pages, 4849 KiB  
Article
Enhancing Anticorrosion Resistance of Aluminum Alloys Using Femtosecond Laser-Based Surface Structuring and Coating
by Tahir Nawaz, Asghar Ali, Shahbaz Ahmad, Piotr Piatkowski and Ali S. Alnaser
Nanomaterials 2023, 13(4), 644; https://doi.org/10.3390/nano13040644 - 6 Feb 2023
Cited by 18 | Viewed by 2781
Abstract
We report a robust two-step method for developing adherent and anticorrosive molybdenum (Mo)-based coatings over an aluminum (Al) 6061 alloy substrate using a femtosecond (fs) laser. The fs laser nanostructuring of Al 6061 alloy in air gives rise to regular arrays of microgrooves [...] Read more.
We report a robust two-step method for developing adherent and anticorrosive molybdenum (Mo)-based coatings over an aluminum (Al) 6061 alloy substrate using a femtosecond (fs) laser. The fs laser nanostructuring of Al 6061 alloy in air gives rise to regular arrays of microgrooves exhibiting superhydrophilic surface properties. The microstructured surface is further coated with an Mo layer using the fs-pulsed laser deposition (fs-PLD) technique. The combination of the two femtosecond laser surface treatments (microstructuring followed by coating) enabled the development of a highly corrosion-resistant surface, with a corrosion current of magnitude less than that of the pristine, the only structured, and the annealed alloy samples. The underlying mechanism is attributed to the laser-assisted formation of highly rough hierarchical oxide structures on the Al 6061 surface along with post heat treatment, which passivates the surface and provide the necessary platform for firm adhesion for Mo coating. Our results reveal that the corrosive nature of the Al-based alloys can be controlled and improved using a combined approach of femtosecond laser-based surface structuring and coating. Full article
(This article belongs to the Special Issue Recent Advances in Surfaces and Interfaces of Nanofilms)
Show Figures

Figure 1

15 pages, 6635 KiB  
Article
Functional Behaviour of Cold-Worked and Straight-Annealed NiTi Elements Processed with Ultrashort Laser Cutting
by Carlo Alberto Biffi and Ausonio Tuissi
Metals 2023, 13(1), 16; https://doi.org/10.3390/met13010016 - 22 Dec 2022
Viewed by 1894
Abstract
Among functional materials, quasiequiatomic NiTi alloys are one of the most promising and diffused for some sectors, from the biomedical to aerospace ones. Their peculiar performance, namely, shape memory effect and pseudoelasticity, is induced via a thermomechanical treatment called shape setting or with [...] Read more.
Among functional materials, quasiequiatomic NiTi alloys are one of the most promising and diffused for some sectors, from the biomedical to aerospace ones. Their peculiar performance, namely, shape memory effect and pseudoelasticity, is induced via a thermomechanical treatment called shape setting or with the heat treatment of annealing. This heat treatment is carried out in cold-worked conditions. The present work studies the effect of the material conditions of straight annealing and cold working on the functional performance of diamond-shaped NiTi microdevices realised through ultrashort laser cutting. In detail, experiments were carried out aimed at studying the effect of laser power, scanning speed, and number of passes on the kerf width with the focus on defining the most suitable process condition on both straight-annealed and cold-worked sheets of 100 µm in thickness. After the process parameters had been defined, the transformation temperatures and superelastic behaviour were analysed though differential scanning calorimetry and force–displacement testing. The femtosecond cutting of straight-annealed NiTi did not change the characteristic temperatures of the base material, while the same process induced a soft martensitic transformation with respect to the cold-worked material due to a heat accumulation effect. Full article
(This article belongs to the Special Issue Metallic Functional Materials)
Show Figures

Figure 1

Back to TopTop