Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = fecal mineral excretion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 826 KiB  
Article
Impact of Low-Dose Amino Acid-Chelated Trace Minerals on Performance, Antioxidant Capacity, and Fecal Excretion in Growing-Finishing Pigs
by Yunxia Xiong, Fei Zhao, Yaojie Li, Qiwen Wu, Huaqin Xiao, Shuting Cao, Xuefen Yang, Kaiguo Gao, Zongyong Jiang, Shenglan Hu and Li Wang
Animals 2025, 15(9), 1213; https://doi.org/10.3390/ani15091213 - 24 Apr 2025
Cited by 1 | Viewed by 744
Abstract
Our previous study has shown that replacing 100% inorganic trace minerals with 30% amino acid-chelated ones can enhance antioxidant capacity, improve nutrient digestibility, and reduce fecal excretion in growing-finishing pigs without compromising performance. This study aimed to further reduce the amino acid-chelated trace [...] Read more.
Our previous study has shown that replacing 100% inorganic trace minerals with 30% amino acid-chelated ones can enhance antioxidant capacity, improve nutrient digestibility, and reduce fecal excretion in growing-finishing pigs without compromising performance. This study aimed to further reduce the amino acid-chelated trace minerals content in pig diets and assess its impact. Seventy-two growing-finishing barrows (Duroc × Landrace × Yorkshire), with an initial average body weight of 67.04 ± 0.12 kg, were divided into four groups: negative control (NC, no additional trace minerals), high-dose inorganic trace minerals (HITM, 100% inorganic; 75 mg/kg Fe, 10 mg/kg Cu, 65 mg/kg Zn, 25 mg/kg Mn), and two low-dose groups (15 mg/kg Fe, 4 mg/kg Cu, 12.5 mg/kg Zn, 5 mg/kg Mn) receiving either inorganic sulfates (LITM) or amino acid-chelates (LOTM). The trial concluded when the body weight of pigs reached ~130 kg. Results showed that low-dose trace mineral substitution did not adversely affect growth performance, carcass traits, meat quality, or nutrient digestibility in growing-finishing pigs (p > 0.05). The LOTM pigs exhibited significantly higher serum glutathione peroxidase, liver total superoxide dismutase (T-SOD), and CuZn-SOD activities, muscle CuZn-SOD and catalase activities, and lower liver malondialdehyde content compared with LITM (p < 0.05). Muscle CuZn-SOD in LITM was lower than HITM (p < 0.05), but not in LOTM (p > 0.05). LOTM showed significantly higher muscle Fe content and lower muscle Mn content compared with HITM (p < 0.05), yet its muscle Mn level was higher than that of LITM (p < 0.05). Liver Zn content decreased in LITM compared with HITM (p < 0.05), but remained unchanged in LOTM (p > 0.05). Both LITM and LOTM significantly reduced fecal emissions of Fe, Cu, Zn, and Mn compared with HITM (p < 0.05), with greater reductions in Cu, Zn, and Mn in LOTM. In conclusion, low-dose substitution of inorganic or organic trace minerals did not negatively affect growth, carcass traits, meat quality, or nutrient digestibility in growing-finishing pigs, while it effectively reduced fecal heavy metal emissions. Organic trace minerals were more effective in enhancing antioxidant activity and trace mineral deposition. Full article
Show Figures

Figure 1

13 pages, 535 KiB  
Article
Availability of Zinc, Copper, Iron, Manganese, and Selenium in Feed Ingredients and Sources in Pigs
by Yohan Choi, Junseon Hong, Jihwan Lee and Minju Kim
Agriculture 2025, 15(2), 171; https://doi.org/10.3390/agriculture15020171 - 14 Jan 2025
Cited by 1 | Viewed by 1297
Abstract
This study evaluated the trace mineral availability of zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and selenium (Se) in major feed ingredients, including corn, wheat, soybean meal (SBM), and fish meal (FM). Additionally, we assessed the bioavailability of these minerals in pigs [...] Read more.
This study evaluated the trace mineral availability of zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and selenium (Se) in major feed ingredients, including corn, wheat, soybean meal (SBM), and fish meal (FM). Additionally, we assessed the bioavailability of these minerals in pigs supplemented with inorganic, organic, and nano-sized forms prepared via hot-melt extrusion (HME). A total of 64 barrows (Yorkshire × Landrace × Duroc crossbreds) with an average initial body weight of 26.61 ± 4.12 kg were housed individually in metabolic cages. Pigs were allocated to eight experimental diets in a completely randomized design, with eight replicates per diet group. The apparent total tract digestibility (ATTD) of Zn and Cu was significantly higher in SBM and FM than in the other ingredients (p < 0.05). SBM exhibited higher ATTD and standardized total tract digestibility (STTD) for Fe and Mn than corn, wheat, and FM (p < 0.05). Corn and wheat demonstrated significantly greater digestibility of Se than SBM and FM (p < 0.05). Supplementation with nano-sized minerals prepared by HME increased the digestibility of Zn and Cu, as well as their concentrations in pigs’ serum and liver, while reducing the fecal excretion of these minerals (p < 0.05). Organic mineral forms significantly enhanced Se bioavailability, improving its digestibility and concentrations in the liver and pancreas compared to the inorganic form (p < 0.05). In growth performance, organic and nano-sized mineral sources significantly improved growth rate without the increase in feed intake (p < 0.05). In conclusion, Zn and Cu from high-protein ingredients such as SBM and FM were more digestible than those from grains. Furthermore, plant-based ingredients, such as corn, wheat, and SBM, exhibited greater digestibility of Fe and Se. Among the trace mineral sources, the organic and HME-nano forms improved the bioavailability of Zn, Cu, and Se, while reducing their fecal excretion, thereby enhancing the efficiency of mineral utilization. Full article
(This article belongs to the Special Issue Assessment of Nutritional Value of Animal Feed Resources)
Show Figures

Figure 1

16 pages, 305 KiB  
Article
Fecal Excretion and Whole-Body Retention of Macro and Micro Minerals in Atlantic Salmon Fed Torula Yeast Grown on Sugar Kelp Hydrolysate
by Jon Øvrum Hansen, Sandeep Sharma, Svein Jarle Horn, Vincent G. H. Eijsink, Margareth Øverland and Liv Torunn Mydland
Animals 2021, 11(8), 2409; https://doi.org/10.3390/ani11082409 - 14 Aug 2021
Cited by 6 | Viewed by 4196
Abstract
Yeast is a microbial feed ingredient that can be produced from non-food biomasses. Brown seaweed contains high levels of complex carbohydrates that are not digested to any extent by monogastric animals but can be used as carbon sources for yeast production. The objective [...] Read more.
Yeast is a microbial feed ingredient that can be produced from non-food biomasses. Brown seaweed contains high levels of complex carbohydrates that are not digested to any extent by monogastric animals but can be used as carbon sources for yeast production. The objective of this study was to investigate how minerals originating from brown macroalgae (Saccharina latissima) are incorporated in Cyberlindnera jadinii yeast and to assess the bioavailability of these different minerals as well as their accumulation into different organs of Atlantic salmon. The yeast C. jadinii was produced on a seaweed hydrolysate mixed with a sugar-rich wood hydrolysate in a 9:1 volume ratio and fed to Atlantic salmon (Salmo salar) in two different experiments: a digestibility experiment with 30% dietary inclusion of yeast and a retention experiment with increasing inclusion of yeast (5, 10, and 20%). Seaweed minerals such as zinc (Zn), copper (Cu), iodine (I), manganese (Mn), and cobalt (Co) were incorporated to a high degree in the yeast. The apparent fecal excretion of minerals was similar in both experiments, in general, with low excretion of, I, bromine (Br), and arsenic (As) (ranging from 18.0% to 63.5%) and high excretion of iron (Fe), Cu, Mn, aluminum (Al), cadmium (Cd) and lead (Pb) (ranging from 56.9% to <100%), despite the different fish size and fecal sampling method. High levels of Cu, I, Br, and Co in the yeast resulted in a linear decrease (p < 0.05) in retention of these minerals in salmon fed increasing levels of yeast. Despite increasing amounts of these minerals in the feed, whole-body levels of Cu and Mn remained stable, whereas whole-body levels of Co, somewhat unexpectedly, decreased with increased dietary yeast inclusion. The Cd from the yeast had low bioavailability but was concentrated more in the kidney (0.038 mg kg−1) and liver (0.025 mg kg−1) than in muscle (0.0009 mg kg−1). The given Cd level in fish strengthens the indication that it is safe to feed salmon with up to 20% inclusion of seaweed yeast without exceeding the maximum limit for Cd of 0.05 mg kg−1 w.w. in fish meat. The level and retention (p < 0.05) of As were lower in the yeast compared to fishmeal. The high level of iodine in S. latissima (3900 mg kg−1) was partly transferred to the yeast, and salmon fed increasing levels of yeast displayed a linear increase in whole-body I content (p < 0.05). There is, however, a need for a growth experiment with larger fish to draw any firm conclusions regarding food safety. Overall, this study shows that yeast grown on hydrolyzed seaweed can be a suitable mineral source for Atlantic salmon, especially when diets are low in fishmeal. Full article
(This article belongs to the Special Issue Mineral Nutrition and Metabolism in Fish)
22 pages, 1595 KiB  
Article
No Observed Adverse Effects on Health Were Detected in Adult Beagle Dogs When Fed a High-Calcium Diet for 40 Weeks
by Jujhar Atwal, Jonathan Stockman, Matthew Gilham, David Allaway, Helen Renfrew, Anne Marie Bakke and Phillip Watson
Animals 2021, 11(6), 1799; https://doi.org/10.3390/ani11061799 - 16 Jun 2021
Cited by 3 | Viewed by 4151
Abstract
The implications of long-term high calcium (Ca) intake are well documented in growing dogs and in adult dogs of large breed size, however, the consequences on other breeds and breed sizes are yet to be determined. Eighteen neutered adult beagles, nine males and [...] Read more.
The implications of long-term high calcium (Ca) intake are well documented in growing dogs and in adult dogs of large breed size, however, the consequences on other breeds and breed sizes are yet to be determined. Eighteen neutered adult beagles, nine males and nine females aged 1.4–4.4 years, were randomized to control or test diets providing in g∙4184 kJ−1 (1000 kcal−1): 1.44 and 7.19 total Ca balanced with 1.05 and 4.25 total phosphorus, respectively, for 40 weeks. Health parameters, ultrasound scans, radiographs, glomerular filtration rate, and mineral balance were measured at eight-week intervals. All dogs remained healthy with no measured evidence of orthopedic, urinary, or renal disease. The test diet resulted in a 5.2 fold increase in fecal Ca excretion. Apparent Ca digestibility (%) and Ca balance (g/d) did not significantly (p > 0.05) change from baseline in the test diet group, although dogs displayed a positive Ca balance (maximum at week 8, 1.11 g/d with 95% CI (0.41, 1.80)) before a neutral Ca balance was restored at week 32. Despite an initial positive Ca balance, we can conclude that no measurable adverse health effects were observed as a result of the test diet fed in this study in beagles over a period of 40 weeks. Full article
Show Figures

Figure 1

16 pages, 275 KiB  
Article
Effects of Different Patterns and Sources of Trace Elements on Laying Performance, Tissue Mineral Deposition, and Fecal Excretion in Laying Hens
by Kaili Yang, Shengjun Hu, Rui Mu, Yiqing Qing, Liang Xie, Liyuan Zhou, Kolapo M. Ajuwon and Rejun Fang
Animals 2021, 11(4), 1164; https://doi.org/10.3390/ani11041164 - 19 Apr 2021
Cited by 16 | Viewed by 3234
Abstract
This study was conducted to investigate the effects of different patterns and sources of Zn, Fe, Cu, Mn, and Se on performance, mineral deposition (liver, kidney, pancreas, spleen, pectorals muscle, and tibia), and excretion of laying hens, then to find an optimal dietary [...] Read more.
This study was conducted to investigate the effects of different patterns and sources of Zn, Fe, Cu, Mn, and Se on performance, mineral deposition (liver, kidney, pancreas, spleen, pectorals muscle, and tibia), and excretion of laying hens, then to find an optimal dietary supplemental pattern of trace elements in laying hens. A total of 864 healthy laying hens with similar laying rate (Roman, 26-week-old) were randomly divided into nine treatments, with six replications of 16 birds per replication, including a control treatment and four patterns with different element sources (inorganic or organic): (1) Control treatment (basic diet without added extra trace minerals, CT); pattern 1, NRC (1994) recommended level (NRC-L): (2) inorganic minerals of NRC-L pattern (IN), (3) organic minerals of NRC-L pattern (ON); pattern 2, NY/T 33-2004 recommended level (NY/T-L): (4) inorganic minerals of NY/T-L pattern (IY), (5) organic minerals of NY/T-L pattern (OY); pattern 3, 50% NRC (1994) recommended level (50% NRC-L): (6) inorganic minerals of 50% NRC-L pattern (IHN), (7) organic minerals of 50% NRC-L pattern (OHN); pattern 4, the ratio of minerals in blood of laying hens was taken as the supplement proportion of trace elements, and Zn was supplemented depended on NRC recommended level (TLB): (8) inorganic minerals of TLB pattern (IB), (9) organic minerals of TLB pattern (OB). Two weeks were allowed for adjustment to the conditions and then measurements were made over eight weeks. Supplementation of trace elements led to increased daily egg weight (p < 0.05). Patterns of minerals in diets affected the content of liver Mn, pancreas Mn, tibia Mn, and the tissues Se (p < 0.05). Sources of minerals had positive effects on daily egg weight (p < 0.05), the concentrations of liver Fe, kidney Cu, tissues Se (except spleen), and fecal Se (p < 0.05). In conclusion, diet supplemented with the organic trace minerals of 50% NRC-L pattern (OHN) in laying hens promoted optimum laying performance, mineral deposition, and reduced mineral excretion. Full article
(This article belongs to the Section Poultry)
12 pages, 261 KiB  
Article
Dietary Trace Mineral Level and Source Affect Fecal Bacterial Mineral Incorporation and Mineral Leaching Potential of Equine Feces
by Ashley L. Fowler, Mieke Brümmer-Holder and Karl A. Dawson
Sustainability 2019, 11(24), 7107; https://doi.org/10.3390/su11247107 - 11 Dec 2019
Cited by 4 | Viewed by 2882
Abstract
Minerals excreted in feces have the potential to leach or runoff to water-ways, negatively impacting water quality. This study examined the effect of dietary trace mineral levels, and their source, on the leaching potential of minerals from equine feces. Nine horses were used [...] Read more.
Minerals excreted in feces have the potential to leach or runoff to water-ways, negatively impacting water quality. This study examined the effect of dietary trace mineral levels, and their source, on the leaching potential of minerals from equine feces. Nine horses were used in a replicated 3 × 3 Latin Square, with three dietary treatments provided as pellets: no added trace minerals (CON), added inorganic trace minerals (ING), and added organic trace minerals (ORG). Supplemental trace minerals included Co, Cu, Mn, and Zn. Horses were allowed ad libitum access to forage and fed their treatment pellets for 16 days prior to fecal sample collection. Estimated dietary mineral intake exceeded requirements for supplemented minerals. Regardless of the source, adding dietary trace minerals increased the fecal leaching potential of Cu, Zn, and P (p < 0.05). More Co leached from ORG compared to ING, while Zn leached in greater amounts from ING compared to ORG (p < 0.05). Fecal bacterial Zn content was greater (p < 0.05) for ORG compared to ING. Negative correlations were observed between bacterial mineral content and leaching for several minerals. Supplementing trace minerals in forms that increase microbial incorporation may provide a strategy to control fecal mineral leaching. Full article
(This article belongs to the Special Issue Sustainability in the Equine Industry)
12 pages, 243 KiB  
Article
Hypocholesterolemic Effects of Nutraceuticals Produced from the Red Microalga Porphyridium sp. in Rats
by Irit Dvir, Aliza Hannah Stark, Reuven Chayoth, Zecharia Madar and Shoshana Malis Arad
Nutrients 2009, 1(2), 156-167; https://doi.org/10.3390/nu1020156 - 23 Nov 2009
Cited by 97 | Viewed by 14925
Abstract
Red microalgae contain functional sulfated polysaccharides (containing dietary fibers), polyunsaturated fatty acids, zeaxanthin, vitamins, minerals, and proteins. Studies in rat models support the therapeutic properties of algal biomass and isolated polysaccharides. Algal products incorporated into rat diets were found to significantly improve total [...] Read more.
Red microalgae contain functional sulfated polysaccharides (containing dietary fibers), polyunsaturated fatty acids, zeaxanthin, vitamins, minerals, and proteins. Studies in rat models support the therapeutic properties of algal biomass and isolated polysaccharides. Algal products incorporated into rat diets were found to significantly improve total serum cholesterol, serum triglycerides, hepatic cholesterol levels, HDL/LDL ratios and increased fecal excretion of neutral sterols and bile acids. Morphological and metabolic changes were induced by consumption of algal products. These results suggest that red microalgae can be used as potent hypocholesterolemic agents, and they support the potential use of red microalgae as novel nutraceuticals. Full article
(This article belongs to the Special Issue Foodomics 2009)
Show Figures

Figure 1

Back to TopTop