Dietary Trace Mineral Level and Source Affect Fecal Bacterial Mineral Incorporation and Mineral Leaching Potential of Equine Feces
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pre-Leached Fecal Mineral Concentrations
3.2. pH of Leachate
3.3. Percent Mineral That Leached
3.4. Bacterial Mineral Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Item | Grass Hay | Pasture |
---|---|---|
DM, % | 92.5 | 88.5 |
CP, % | 10.9 | 23.1 |
NDF, % | 68.9 | 50.4 |
ADF, % | 40.2 | 30.8 |
Ca, % | 0.48 | 0.56 |
P, % | 0.43 | 0.58 |
Mg, % | 0.21 | 0.28 |
K, % | 1.3 | 3.86 |
Na, % | 0.086 | 0.01 |
Fe, mg kg−1 | 724 | 246 |
Zn, mg kg−1 | 31 | 37 |
Cu, mg kg−1 | 12 | 9 |
Mn, mg kg−1 | 171 | 93 |
Mo, mg kg−1 | 1 | 1 |
Co, mg kg−1 | 0.3 | 0.18 |
Cr, mg kg−1 | N.D. | N.D. |
Mineral | CON | ING | ORG | SEM | p-Value |
---|---|---|---|---|---|
Ca, % | 1.13 | 1.13 | 1.03 | 0.09 | 0.6423 |
P, % | 0.83 | 0.86 | 0.83 | 0.03 | 0.7653 |
Mg, % | 0.28 | 0.30 | 0.28 | 0.01 | 0.3461 |
K, % | 1.00 | 0.99 | 1.00 | 0.05 | 0.9758 |
Na, % | 0.16 | 0.15 | 0.15 | 0.017 | 0.9294 |
S, % | 0.15 | 0.16 | 0.15 | 0.005 | 0.7994 |
Fe, mg kg−1 | 1587 | 1619 | 1500 | 158 | 0.8613 |
Cr, mg kg−1 | 8.11 | 7.97 | 9.70 | 1.05 | 0.4505 |
Mo, mg kg−1 | 1.48 | 1.38 | 1.38 | 0.24 | 0.9411 |
Item | CON | ING | ORG | SEM | p-Value |
---|---|---|---|---|---|
pH 1 | 6.81 | 6.76 | 6.81 | 0.019 | 0.1101 |
pH 2 | 6.93 | 6.88 | 6.91 | 0.020 | 0.2739 |
Mineral | Correlated Mineral (r Value) |
---|---|
Ca | P (0.790), Mg (0.667), Fe (0.719), Zn (0.637) |
P | Ca (0.790), P (0.641), Cu (0.653), Fe (0.557), Zn (0.609) |
Mg | Ca (0.667), P (0.641), S (0.746), Cu (0.521), Fe (0.628), Zn (0.649) |
K | -- |
Na | -- |
S | Mg (0.746) |
Co | Cu (0.711), Mn (0.799), Zn (0.616), Cr (0.778), Ni (0.700), Pb (0.883) |
Cu | P (0.653), Mg (0.521), Mn (0.590), Co (0.711), Pb (0.506) |
Mn | Cu (0.590), Zn (0.695), Co (0.799), Cr (0.516), Ni (0.674), Cd (0.577), Pb (0.893) |
Zn | Ca (0.637), P (0.609), Mg (0.649), Fe (0.539), Mn (0.695), Co (0.616), Cd (0.575), Pb (0.591) |
Fe | Ca (0.719), P (0.557), Mg (0.628), Zn (0.539) |
Cr | Mn (0.516), Co (0.778), Pb (0.742) |
Mo | -- |
References
- Petruzzelli, G. Recycling wastes in agriculture: Heavy metal bioavailability. Agric. Ecosyst. Environ. 1989, 27, 493–503. [Google Scholar] [CrossRef]
- Brugger, D.; Windisch, W.M. Environmental responsibilities of livestock feeding using trace mineral supplements. Anim. Nutr. 2015, 1, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.I.; Ugulu, I.; Umar, S.; Ahmad, K.; Mehmood, N.; Ashfaq, A.; Bashir, H.; Sohail, M. Potential toxic metal accumulation in soil, forage and blood plasma of buffaloes sampled from Jhang, Pakistan. Bull. Environ. Contam. Toxicol. 2018, 101, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Sprague, J.; Elson, P.; Saunders, R. Sublethal copper-zinc pollution in a salmon river—A field and laboratory study. In Advances in Water Pollution Research; Elsevier: Amsterdam, The Netherlands, 1965; pp. 61–82. [Google Scholar] [CrossRef]
- Mount, D.I. Chronic toxicity of copper to fathead minnows (Pimephales promelas, Rafinesque). Water Res. 1968, 2, 215–223. [Google Scholar] [CrossRef]
- Lloyd, R. The toxicity of zinc sulphate to rainbow trout. Ann. Appl. Biol. 1960, 48, 84–94. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.-D.; Luo, X.-G. Nutritional strategies for reducing nitrogen, phosphorus and trace mineral excretions of livestock and poultry. J. Integr. Agric. 2017, 16, 2815–2833. [Google Scholar]
- López-Alonso, M. Trace minerals and livestock: Not too much not too little. ISRN Vet. Sci. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Coenen, M. Macro and trace elements in equine nutrition. In Equine Applied and Clinical Nutrition; Goer, R.J., Harris, P.A., Coenen, M., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2013; pp. 190–228. [Google Scholar] [CrossRef]
- Knowlton, K.; Radcliffe, J.; Novak, C.; Emmerson, D. Animal management to reduce phosphorus losses to the environment. J. Anim. Sci. 2004, 82, E173–E195. [Google Scholar] [CrossRef] [Green Version]
- Harper, M.; Swinker, A.; Staniar, W.; Welker, A. Ration evaluation of Chesapeake Bay watershed horse farms from a nutrient management perspective. J. Equine Vet. Sci. 2009, 5, 401–402. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Horses; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Spears, J.W. Organic trace minerals in ruminant nutrition. Anim. Feed Sci. Technol. 1996, 58, 151–163. [Google Scholar] [CrossRef]
- Turner, B.L.; Haygarth, P.M. Biogeochemistry: Phosphorus solubilization in rewetted soils. Nature 2001, 411, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability: Update on microbial phosphorus. Plant. Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spears, J.W. Minerals in Forages. In Forage Quality, Evaluation, and Utilization; Fahey, G., Ed.; ASA, CSSA, SSSA: Madison, WI, USA, 1994; pp. 281–317. [Google Scholar] [CrossRef]
- University of Kentucky Agricultural Weather Center Historical Data 1977–2016. Available online: http://weather.uky.edu/ky/data.php#KY_Monthly_Data (accessed on 5 October 2016).
- Palecki, M.A.; Angel, J.R.; Hollinger, S.E. Storm precipitation in the United States. Part I: Meteorological characteristics. J. Appl. Meteorol. 2005, 44, 933–946. [Google Scholar] [CrossRef]
- Schemenauer, R.S.; Cereceda, P. A proposed standard fog collector for use in high-elevation regions. J. Appl. Meteorol. 1994, 33, 1313–1322. [Google Scholar] [CrossRef]
- Weatherbill Inc. Precipitation Averages, Seasonality, Volatility and Trends in the United States. 2007. Available online: http://www.climate.com/assets/LandingPageDocs/rainfallstudy2007.pdf (accessed on 5 October 2016).
- Bock, B.; Harmon, D.; Brandt, R., Jr.; Schneider, J. Fat source and calcium level effects on finishing steer performance, digestion, and metabolism. J. Anim. Sci. 1991, 69, 2211–2224. [Google Scholar] [CrossRef]
- Dehority, B.A.; Grubb, J.A. Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl. Environ. Microbiol. 1980, 39, 376–381. [Google Scholar]
- Wagner, E.; Potter, G.; Gibbs, P.; Eller, E.; Scott, B.; Vogelsang, M.; Walzem, R. Copper and zinc balance in exercising horses fed 2 forms of mineral supplements. J. Anim. Sci. 2011, 89, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.; Baker, L.; Pipkin, J.; Bachman, R.; Haliburton, J.; Veneklasen, G. The effect of supplemental inorganic and organic forms of copper and zinc on digestibility in yearling geldings in training. In Proceedings of the Equine Nutrition & Physiology Society Symposium, East Lansing, MI, USA, 4–7 June 2003; pp. 107–112. [Google Scholar]
- Wagner, E.; Potter, G.; Eller, E.; Gibbs, P. Absorption and retention of trace minerals in adult horses. Prof. Anim. Sci. 2005, 21, 207–211. [Google Scholar] [CrossRef]
- Gordon, M.; Edwards, M.; Sweeney, C.; Jerina, M. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses. Part I: Blood nutrient concentration and digestibility. J. Anim. Sci. 2013, 91, 3899–3908. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.; Wrigley, M.; Pipkin, J.; Haliburton, J.; Bachman, R. Digestibility and retention of inorganic and organic sources of copper and zinc in mature horses. In Proceedings of the 19th Equine Science Society, Tuscon, AZ, USA, 1–3 June 2005; pp. 100–105. [Google Scholar]
- Leeson, S.; Caston, L. Using minimal supplements of trace minerals as a method of reducing trace mineral content of poultry manure. Anim. Feed Sci. Technol. 2008, 142, 339–347. [Google Scholar] [CrossRef]
- Miller, W.; Martens, D.; Zelazny, L.; Kornegay, E. Forms of Solid Phase Copper in Copper-enriched Swine Manure. J. Environ. Qual. 1986, 15, 69–72. [Google Scholar] [CrossRef]
- Kennedy, D.; Craig, W.; Southern, L. Ruminal distribution of zinc in steers fed a polysaccharide-zinc complex or zinc oxide. J. Anim. Sci. 1993, 71, 1281–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers: An. Introduction to Nutrient Management, 8th ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Anderson, R. Chromium. In Trace Elements in Human and Animal Nutrition, 5th ed.; Mertz, W., Ed.; Academies Press, Inc.: San Diego, CA, USA, 1987; Volume 1, pp. 225–244. [Google Scholar]
- Mertz, W. Trace Elements in Human and Animal Nutrition; Academies Press, Inc.: San Diego, CA, USA, 1987; Volume 2. [Google Scholar]
- Pedas, P.; Husted, S.; Skytte, K.; Schjoerring, J.K. Elevated phosphorus impedes manganese acquisition by barley plants. Front. Plant. Sci. 2011, 2, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | CON | ING | ORG |
---|---|---|---|
DM, % | 90.4 | 90.7 | 90.9 |
CP, % | 33.1 | 32.4 | 37.5 |
NDF, % | 13.8 | 13.1 | 13.3 |
ADF, % | 10.2 | 9.5 | 8.7 |
Ca, % | 3.97 | 3.78 | 3.89 |
P, % | 2.24 | 2.12 | 2.24 |
Mg, % | 0.29 | 0.41 | 0.38 |
K, % | 1.96 | 1.96 | 1.96 |
Na, % | 0.996 | 0.998 | 0.944 |
Fe, mg kg−1 | 766 | 855 | 888 |
Zn, mg kg−1 | 81 | 529 | 499 |
Cu, mg kg−1 | 28 | 178 | 152 |
Mn, mg kg−1 | 70 | 432 | 366 |
Mo, mg kg−1 | 4.1 | 4.4 | 4.2 |
Co, mg kg−1 | 0.93 | 1.88 | 2.00 |
Cr, mg kg−1 | 13.2 | 10.4 | 13.4 |
Item | CON | ING | ORG | SEM | p-Value |
---|---|---|---|---|---|
Cobalt | |||||
Fecal, mg kg−1 | 0.735 | 0.917 | 0.938 | 0.0679 | 0.1023 |
Bacterial, mg kg−1 | 1.69 | 2.11 | 2.20 | 0.18 | 0.1519 |
Leached, mg 10 g−1 DM | 0.0021 b | 0.0023 b | 0.0034 a | 0.0003 | 0.0058 |
Leached, % | 27.63 αβ | 27.29 β | 35.40 α | 2.75 | 0.0689 |
Copper | |||||
Fecal, mg kg−1 | 13.20 b | 34.72 a | 32.50 a | 2.69 | <0.0001 |
Bacterial, mg kg−1 | 49.93 b | 116.03 a | 133.05 a | 8.59 | <0.0001 |
Leached, mg 10 g−1 DM | 0.038 b | 0.081 a | 0.093 a | 0.007 | <0.0001 |
Leached, % | 26.05 | 24.40 | 28.23 | 2.10 | 0.4402 |
Manganese | |||||
Fecal, mg kg−1 | 301.56 | 363.06 | 354.05 | 20.65 | 0.1106 |
Bacterial, mg kg−1 | 1199.75 b | 1460.64 a | 1588.42 a | 83.68 | 0.0163 |
Leached, mg 10 g−1 DM | 0.72 | 0.63 | 0.37 | 0.09 | 0.7997 |
Leached, % | 20.40 | 16.56 | 17.90 | 2.24 | 0.5004 |
Zinc | |||||
Fecal, mg kg−1 | 62.13 b | 136.58 a | 129.72 a | 7.84 | <0.0001 |
Bacterial, mg kg−1 | 232.35 c | 357.36 b | 667.08 a | 30.27 | <0.0001 |
Leached, mg 10 g−1 DM | 0.16 c | 0.42 a | 0.27 b | 0.04 | 0.0002 |
Leached, % | 21.89 αβ | 29.63 α | 20.68 β | 2.84 | 0.0758 |
Mineral | CON | ING | ORG | SEM | p-Value |
---|---|---|---|---|---|
Ca, % | 20.86 | 26.16 | 24.98 | 2.22 | 0.2362 |
P, % | 36.81 b | 44.54 a | 42.37 a | 1.94 | 0.0214 |
Mg, % | 32.70 | 35.52 | 33.95 | 1.41 | 0.3734 |
K, % | 61.90 | 63.89 | 62.65 | 1.55 | 0.6598 |
Na, % | 50.64 | 57.37 | 52.87 | 2.44 | 0.1514 |
S, % | 22.43 β | 25.71 α | 24.98 αβ | 1.07 | 0.0896 |
Fe, % | 21.90 | 17.12 | 20.00 | 2.69 | 0.4689 |
Cr, % | 8.81 b | 17.08 b | 30.57 a | 4.16 | 0.0045 |
Mo, % | 25.71 α | 16.55 β | 16.68 β | 3.04 | 0.0707 |
Mineral | CON | ING | ORG |
---|---|---|---|
Co | Cr (0.791), Mn (0.846), Cu (0.793), Zn (0.838) | Mn (0.909), Fe (0.737), Cu (0.849), Zn (0.834), Ca (0.666), P (0.756) | Cr (0.858), Mn (0.806), Cu (0.785), Zn (0.734), Mo (0.616), Mg (0.503), P (0.712) |
Cu | Mn (0.911), Co (0.793), Zn (0.793) | Mn (0.807), Fe (0.596), Co (0.849), Zn (0.812), Ca (0.674), Mg (0.491), Na (0.475), P (0.800) | Cr (0.681), Mn (0.752), Co (0.785), Zn (0.939), Mg (0.652), Na (0.719), P (0.857) |
Mn | Co (0.846), Cu (0.911), Zn (0.641) | Fe (0.650), Co (0.909), Cu (0.807), Zn (0.916), Ca (0.654), Na (0.538), P (0.725) | Cr (0.832), Co (0.806), Cu (0.752), Zn (0.805), Mg (0.609), Na (0.633), P (0.655) |
Zn | Cr (0.755), Mn (0.641), Co (0.838), Cu (0.793), K (−0.528) | Mn (0.916), Fe (0.654), Co (0.934), Cu (0.812), Ca (0.896), Mg (0.726), Na (0.527), P (0.899), S (0.694) | Cr (0.737), Mn (0.805), Co (0.734), Cu (0.939), Mg (0.695), Na (0.638), P (0.780) |
Mineral | CON | ING | ORG | SEM | p-Value |
---|---|---|---|---|---|
Ca, % | 2.15 | 2.08 | 2.11 | 0.11 | 0.8975 |
P, % | 1.44 | 1.41 | 1.43 | 0.07 | 0.9396 |
Mg, % | 0.38 | 0.38 | 0.38 | 0.02 | 0.9792 |
K, % | 0.19 | 0.18 | 0.19 | 0.01 | 0.8263 |
S, % | 0.36 b | 0.37 ab | 0.38 a | 0.004 | 0.0156 |
Fe, mg kg−1 | 4670 | 4669 | 4663 | 403 | 0.9999 |
Cr, mg kg−1 | 8.75 | 9.35 | 9.81 | 0.74 | 0.6098 |
Mo, mg kg−1 | 4.78 | 4.90 | 4.94 | 0.55 | 0.9775 |
Mineral | r | p-Value |
---|---|---|
Co | −0.1684 | 0.2281 |
Cu | −0.0180 | 0.8980 |
Mn | −0.1397 | 0.3333 |
Zn | −0.4242 | 0.0019 |
Ca | −0.1492 | 0.2863 |
P | −0.3568 | 0.0081 |
Mg | −0.4196 | 0.0016 |
K | −0.2132 | 0.1217 |
S | −0.2103 | 0.1270 |
Fe | −0.1140 | 0.4165 |
Cr | −0.2715 | 0.1092 |
Mo | −0.5307 | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fowler, A.L.; Brümmer-Holder, M.; Dawson, K.A. Dietary Trace Mineral Level and Source Affect Fecal Bacterial Mineral Incorporation and Mineral Leaching Potential of Equine Feces. Sustainability 2019, 11, 7107. https://doi.org/10.3390/su11247107
Fowler AL, Brümmer-Holder M, Dawson KA. Dietary Trace Mineral Level and Source Affect Fecal Bacterial Mineral Incorporation and Mineral Leaching Potential of Equine Feces. Sustainability. 2019; 11(24):7107. https://doi.org/10.3390/su11247107
Chicago/Turabian StyleFowler, Ashley L., Mieke Brümmer-Holder, and Karl A. Dawson. 2019. "Dietary Trace Mineral Level and Source Affect Fecal Bacterial Mineral Incorporation and Mineral Leaching Potential of Equine Feces" Sustainability 11, no. 24: 7107. https://doi.org/10.3390/su11247107
APA StyleFowler, A. L., Brümmer-Holder, M., & Dawson, K. A. (2019). Dietary Trace Mineral Level and Source Affect Fecal Bacterial Mineral Incorporation and Mineral Leaching Potential of Equine Feces. Sustainability, 11(24), 7107. https://doi.org/10.3390/su11247107