Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = fayalite slag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2694 KB  
Article
Physicochemical Characteristics of Copper Smelting Slags from Kazakhstan and Their Potential for Secondary Resource Recovery
by Damir Kurmangaliyev and Saule Abdulina
Processes 2026, 14(1), 113; https://doi.org/10.3390/pr14010113 - 29 Dec 2025
Viewed by 347
Abstract
The depletion of the mineral resource base is inevitable. Therefore, it is necessary to adapt and expand the resource base by incorporating non-traditional copper sources in production. Slag samples from the Balkhash Copper Smelting Plant (Kazakhstan) were analyzed for phase composition, microstructure, and [...] Read more.
The depletion of the mineral resource base is inevitable. Therefore, it is necessary to adapt and expand the resource base by incorporating non-traditional copper sources in production. Slag samples from the Balkhash Copper Smelting Plant (Kazakhstan) were analyzed for phase composition, microstructure, and metal distribution using X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical and granulometric methods. The slags are characterized by a fayalite structure with a high content of FeO (35–45%) and SiO2 (25–35%). Sample composition was determined as 0.7–0.8% Cu, 0.39–0.43% Pb, 2.53% Zn, 0.075 g/t Au, and 2.6 g/t Ag. Mineralogical and granulometric analysis revealed a uniform distribution of iron and slag-forming components (SiO2, Al2O3, etc.) across the fractions. In contrast, non-ferrous and precious metals concentrated in the fine classes. Laboratory tests confirmed that the fine dissemination of valuable components led to low efficiency in magnetic and gravity separation, necessitating specific preliminary slag preparation to improve recovery. Flotation tests showed improved recovery, yielding copper concentrates with 4.57% copper content when the material was crushed to 80–90% of the −0.074 mm class. The research creates a basis for the development of environmentally safe and resource-saving technologies and provides initial data for future recovery technologies. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 9113 KB  
Article
Selective Recovery of Rare Earth Elements from Electric Motors in End-of-Life Vehicles via Copper Slag for Sustainability
by Erdenebold Urtnasan, Chang-Jeong Kim, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(11), 3502; https://doi.org/10.3390/pr13113502 - 31 Oct 2025
Viewed by 1264
Abstract
Discarded NdFeB permanent magnets will become a significant source of rare earth elements (REEs) in the future. Electric vehicle (EV) motors utilize 2–5 kg of NdFeB magnets, and researchers are prioritizing the development of suitable extraction technologies. The objective of our research is [...] Read more.
Discarded NdFeB permanent magnets will become a significant source of rare earth elements (REEs) in the future. Electric vehicle (EV) motors utilize 2–5 kg of NdFeB magnets, and researchers are prioritizing the development of suitable extraction technologies. The objective of our research is to separate metal materials (Al, Cu, Fe and FEEs) from EV motors, based on their melting temperatures. REE magnets that pose the greatest challenge are melted together with the electrical steel of the motor, and the potential for extracting REEs in a selective manner from the molten steel was examined based on their significant oxidation potential using FeO–SiO2 compounds, which act as an oxidizing slag-forming agent, to test the extraction method. Fayalite (2FeO·SiO2) is the most easily created and ideal eutectic compound for carrying oxygen (FeO) and forming slag (SiO44), typically generated during copper smelting. In this experiment, copper slag was used and the results were compared to a smelting test, which had previously used a synthesized fayalite flux as a model. The smelting test, utilizing synthesized fayalite flux, yielded a 91% Nd recovery rate. The Nd recovery rate in the smelting test with copper slag hit a high of 64.81%, influenced by the smelting’s holding time. The steel contained 0.08% Nd. Iron was recovered from the copper slag at a rate of 73%. During the smelting test, it was observed that the reaction between Nd2O3 and the Al2O3 crucible resulted in the formation of a layer on the surface of the crucible, diffusion into the crucible itself, and a subsequent reduction in the efficiency of Nd recovery. Full article
Show Figures

Graphical abstract

11 pages, 3193 KB  
Article
Phase Transformation of Fayalite from Copper Slag During Oxidation Roasting
by Xiaoxue Zhang, Yuqi Zhao, Huili Zhou, Xiangyu Wang, Zhonglin Gao and Hongyang Wang
Processes 2025, 13(10), 3317; https://doi.org/10.3390/pr13103317 - 16 Oct 2025
Viewed by 691
Abstract
The phase transformation of fayalite from copper slag during oxidation roasting was systematically studied in this work with an analysis using X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer, scanning electronic microscope, and energy dispersive spectrometer. The results show that the oxidation of [...] Read more.
The phase transformation of fayalite from copper slag during oxidation roasting was systematically studied in this work with an analysis using X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer, scanning electronic microscope, and energy dispersive spectrometer. The results show that the oxidation of fayalite occurs at ≥300 °C. Fayalite is first oxidized into amorphous Fe3O4 and SiO2 during oxidation roasting. The former then converts into Fe2O3 while the latter converts into cristobalite solid solution with increasing temperature. Meanwhile, the specific saturation magnetization of roasted products increases from 9.43 emu/g at 300 °C to 20.66 emu/g at 700 °C, and then decreases to 7.31 emu/g at 1100 °C. The migration of iron in fayalite is prior to that of silicon during oxidation roasting. Therefore, the thickness of the iron oxide layer on the particle surface steadily increases with roasting temperature, from about 1.0 μm at 800 °C to about 5.0 μm at 1100 °C. This study has guiding significance for the iron grain growth in copper slag during the oxidation-reduction roasting process. Full article
(This article belongs to the Special Issue Non-ferrous Metal Metallurgy and Its Cleaner Production)
Show Figures

Figure 1

12 pages, 1897 KB  
Article
Enhanced Extraction of Valuable Metals from Copper Slags by Disrupting Fayalite and Spinel Structures Using Sodium Sulfate
by Shafiq Alam, Behzod Tolibov, Madat Akhmedov, Umidjon Khujamov and Sardor Yarlakabov
Minerals 2025, 15(8), 771; https://doi.org/10.3390/min15080771 - 22 Jul 2025
Viewed by 2844
Abstract
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition [...] Read more.
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition rate of 89%, highlighting its effectiveness in liberating valuable metals from the slag matrix. The optimal temperature for maximizing fayalite decomposition is determined to be 900 °C, which significantly enhances reaction kinetics and efficiency. Furthermore, extending the reaction time to 90 min resulted in the highest observed decomposition efficiency. Subsequent leaching experiments in sulfuric acid confirmed that the liberated metal transitioned into the solution phase was very effective, ensuring high metal recovery rates. The treated samples demonstrated metal recovery rates of 97% for copper (Cu), 96% for iron (Fe), and 93% for zinc (Zn). In contrast, the untreated samples exhibited considerably lower recovery rates, with copper at 61%, iron at 59%, and zinc at 65%. Additionally, this approach mitigates filtration challenges by preventing the formation of silica gel. These findings provide key operational parameters for optimizing metal recovery from copper slag and establish a solid foundation for advancing sustainable and efficient resource extraction research. Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Figure 1

13 pages, 3918 KB  
Article
Fayalite-Based Geopolymer Foam
by Aleksandar Nikolov, Mihail Tarassov, Ivan Rostovsky, Miryana Raykovska, Ivan Georgiev and Kinga Korniejenko
Ceramics 2025, 8(2), 77; https://doi.org/10.3390/ceramics8020077 - 19 Jun 2025
Cited by 1 | Viewed by 1034
Abstract
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water [...] Read more.
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water to solid ratio, followed by testing their physical and mechanical properties. The phase composition and microstructure of the obtained geopolymer foams were examined using powder XRD, Micro-CT and SEM. The geopolymer foams at optimal water to solid ratio (0.15) demonstrated 73.2% relative porosity, 0.92 g/cm3 apparent density and 1.3 MPa compressive strength. The use of an air-entraining admixture improved compressive strength to 2.8 MPa but lowered the relative porosity to 64.5%. Real-size lightweight panel (300 × 300 × 30 mm) specimens were prepared to measure thermal conductivity coefficient (0.243 W/mK) and evaluate size effect and the reaction to direct fire. This study demonstrates the successful preparation of geopolymer foam products containing 81% fayalite slag, highlighting its potential as a lightweight, insulating and fire-resistant material for sustainable construction applications. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 2876 KB  
Article
Pyrometallurgical Recycling of Electric Motors for Sustainability in End-of-Life Vehicle Metal Separation Planning
by Erdenebold Urtnasan, Jeong-Hoon Park, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(6), 1729; https://doi.org/10.3390/pr13061729 - 31 May 2025
Cited by 2 | Viewed by 1861
Abstract
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare [...] Read more.
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare earth elements (REEs) from NdFeB permanent magnets (PMs). This research is based on a single-furnace process concept designed to separate metal components within PM motors by exploiting the varying melting points of the constituent materials, simultaneously extracting REEs present within the PMs and transferring them into the slag phase. Thermodynamic modeling, via Factsage Equilib stream calculations, optimized the experimental process. Simulated materials substituted the PM motor, which optimized modeling-directed melting within an induction furnace. The 2FeO·SiO2 fayalite flux can oxidize rare earth elements, resulting in slag. The neodymium oxidation reaction by fayalite exhibits a ΔG° of −427 kJ when subjected to an oxygen partial pressure (PO2) of 1.8 × 10−9, which is lower than that required for FeO decomposition. Concerning the FeO–SiO2 system, neodymium, in Nd3+, exhibits a strong bonding with the SiO44 matrix, leading to its incorporation within the slag as the silicate compound, Nd2Si2O7. When 30 wt.% fayalite flux was added, the resulting experiment yielded a neodymium extraction degree of 91%, showcasing the effectiveness of this fluxing agent in the extraction process. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

10 pages, 1784 KB  
Article
Recovery of Copper from Slags Through Flotation at the Hernán Videla Lira Smelter
by Luis Valderrama, Jaime Tapia, Osvaldo Pavez, Mario Santander, Víctor Rivera and Miguel Gonzalez
Minerals 2024, 14(12), 1228; https://doi.org/10.3390/min14121228 - 2 Dec 2024
Cited by 4 | Viewed by 3722
Abstract
The significant volume of copper smelting slags poses environmental challenges, particularly concerning soil and surface water contamination. However, these slags contain valuable elements such as copper and iron, the recovery of which can contribute to both environmental protection and the circular economy in [...] Read more.
The significant volume of copper smelting slags poses environmental challenges, particularly concerning soil and surface water contamination. However, these slags contain valuable elements such as copper and iron, the recovery of which can contribute to both environmental protection and the circular economy in Chile. This study analyzes, at both laboratory and industrial scales, the recovery of copper sulfides from the slags of the Hernán Videla Lira Smelter in Atacama, Chile. Physical, chemical, and mineralogical characterizations were performed, along with flotation tests (rougher and cleaner) to optimize the grinding degree, pH, reagents, and flotation times. The slag, with a copper grade of 0.71%, contains fayalite, magnetite, quartz, pyrite, and chalcopyrite. In the laboratory, the concentrate obtained in the rougher stage showed a copper grade of 3.7% with a recovery rate of 62.1%; in the cleaner stage, the grade increased to 24.4%, with a recovery rate of 71.7%. At the industrial level, the rougher–cleaner circuit produced concentrates with a copper grade of 27.9% and a recovery rate of 87.5% processing 1344 tons per day, thus demonstrating the viability of this methodology. Full article
(This article belongs to the Special Issue Industrial Minerals Flotation—Fundamentals and Applications)
Show Figures

Figure 1

14 pages, 12342 KB  
Article
Structural Changes in Copper Slags During Slow Cooling
by Bulat Sukurov, Sergey Kvyatkovskiy, Sultanbek Kozhakhmetov, Anastassiya Semenova, Maral Dyussebekova and Marina Kvyatkovskaya
Metals 2024, 14(10), 1187; https://doi.org/10.3390/met14101187 - 18 Oct 2024
Cited by 2 | Viewed by 2436
Abstract
The objects of the study were converter slags from the Balkhash copper plant in their initial state and after heat treatment. Using mineralogical and X-ray phase analysis, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA), it was found that the initial converter [...] Read more.
The objects of the study were converter slags from the Balkhash copper plant in their initial state and after heat treatment. Using mineralogical and X-ray phase analysis, scanning electron microscopy (SEM), and electron probe microanalysis (EPMA), it was found that the initial converter slag and its thermally treated samples have identical matrices with almost complete coincidence in mineral and phase compositions. The distinguishing feature is the quantitative ratio of mineral components in the slag mass. Almost all of the iron is oxidized and present in the form of fayalite, magnetite, and magnetite, with other elements (silicon, copper, zinc, and aluminum) incorporated into its lattice. The structure of all slag samples indicates an association of sulfur exclusively with copper. Copper in the slags was identified in both metallic and sulfide forms. Slow cooling of the converter slag after its remelting contributes to the reduction in the sulfide–metal suspension in the volume of the melt and its coarsening. During slow cooling, structural changes occur not only in the main oxide part of the slag but also in the polymetallic globules. Full article
Show Figures

Figure 1

13 pages, 4322 KB  
Article
Characterization of Bloom Iron Smelting Site Remains in Pržanj, Slovenia
by Jaka Burja, Barbara Šetina Batič and Daša Pavlovič
Heritage 2024, 7(8), 3919-3931; https://doi.org/10.3390/heritage7080185 - 25 Jul 2024
Cited by 2 | Viewed by 2583
Abstract
This paper gives an overview of findings, connected with metallurgical activity, at the Pržanj archeological site near Ljubljana, Slovenia. More than 230 kg of slag and other remains connected with early medieval (from the 5th to the 12th century AD) metallurgical activities was [...] Read more.
This paper gives an overview of findings, connected with metallurgical activity, at the Pržanj archeological site near Ljubljana, Slovenia. More than 230 kg of slag and other remains connected with early medieval (from the 5th to the 12th century AD) metallurgical activities was found at the excavation site. The remains were grouped into four categories, i.e., furnace remains, ore, slag and a ferrous product, and analyzed in detail to obtain their chemical composition, microstructural characteristics, and mineral phase composition. The furnace wall remains, identified by their morphology and chemical composition, revealed an intensive iron processing activity at the site. The iron ore at the site was identified as goethite (FeO(OH)), a surprising find in Slovenia where limonite is typically used, and its presence suggests the potential exploitation of local bog iron ore, given the site’s geological context. Abundant slag remains at the site, identified by their shape, molten microstructure, and mineral components like wuestite, fayalite, and hercynite, indicated sophisticated smelting practices, including the use of CaO-rich materials to lower the melting temperature, a technique likely preserved from antiquity. Findings of ferrous products at ancient metallurgical sites are rare due to their value, but the discovery of a corroded iron bloom conglomerate at this site, initially mistaken for furnace remains, highlights the challenges in identifying small, corroded ferrous fragments that are often misidentified as ore. The results indicate extensive metallurgical activity at the excavation site, marking it as the first documented early medieval iron smelting production site in Slovenia. Full article
Show Figures

Figure 1

15 pages, 7124 KB  
Article
Characterization, Concentration, and Speciation of Metal Elements in Copper Slag: Implications for Secondary Metal Recovery
by Zirou Liu, Xinhang Xu, Li Guo, Qiusong Chen and Chongchong Qi
Crystals 2024, 14(5), 420; https://doi.org/10.3390/cryst14050420 - 29 Apr 2024
Cited by 1 | Viewed by 2916
Abstract
The treatment of large amounts of copper slag is an unavoidable issue resulting from the high demand for copper during the global transition to a sustainable development path. Metal-rich copper slag might serve as a potential source of metals through secondary recovery. In [...] Read more.
The treatment of large amounts of copper slag is an unavoidable issue resulting from the high demand for copper during the global transition to a sustainable development path. Metal-rich copper slag might serve as a potential source of metals through secondary recovery. In this study, two copper slags (CS1 and CS2) with different metallurgical properties were characterized, focusing on secondary metal recovery. The X-ray diffraction (XRD) results show that fayalite (Fe2SiO4) and magnetite (Fe3O4) were the main crystalline phases in both CS1 and CS2. In addition, CS2 exhibited a more stable amorphous silicate network than CS1, which was attributed to the differences in the content of Si-O-3NBO linkages. The sequential extraction of Zn, Cu, Fe, and Pb from the slags was also explored, with the Cu content in CS1 being substantially lower than that in CS2. All metals were distributed in the F5 residue fraction. Cu was the most mobile metal as a result of the large proportion of soluble fractions (F1–F3), followed by Zn and Fe. This study explored the chemical speciation of Zn, Cu, Fe, and Pb from copper slags, which has practical implications for secondary metal recovery from such materials. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Graphical abstract

20 pages, 39683 KB  
Article
Chemical Composition, Crystal Structure, and Microstructure of Slags on the Korean Peninsula from the First Copper Production Remains of the 9th Century
by Hyoryeong Choi, Yeongchun Yu and Namchul Cho
Crystals 2024, 14(4), 327; https://doi.org/10.3390/cryst14040327 - 30 Mar 2024
Cited by 1 | Viewed by 1912
Abstract
The scarcity of excavated early-stage smelting sites related to copper production presents significant challenges in gaining a comprehensive understanding of the copper production process. However, the archaeological site discovered in 2018 in Daeryang-ri, Jinan-gun, Jeollabuk-do, boasts a substantial number of copper smelting remains [...] Read more.
The scarcity of excavated early-stage smelting sites related to copper production presents significant challenges in gaining a comprehensive understanding of the copper production process. However, the archaeological site discovered in 2018 in Daeryang-ri, Jinan-gun, Jeollabuk-do, boasts a substantial number of copper smelting remains and related slags, marking it as the first copper manufacturing production site identified on the Korean Peninsula. Consequently, this study selected 10 slag samples, chosen based on surface color and characteristics indicative of a connection to copper smelting, for scientific analysis to accurately ascertain the site’s nature. The primary component analysis of the slags indicated that CuO content ranged from 0.30 to 3.29 wt%, which, although not high, reveals significant quantities of FeO and SiO2. X-ray diffraction analysis revealed the presence of minerals such as cristobalite, along with fayalite and wüstite, commonly found in slags, varying by sample. Furthermore, microstructural observation revealed circular copper particles containing sulfur and iron, indicating the presence of copper particles in a matte state that have not been refined. This analysis suggests that the slags recovered from Jinan Daeryang-ri bear evidence of iron smelting at the site, with the slag being produced as an intermediate by-product during copper production. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

13 pages, 3864 KB  
Article
Speciation Characterization and Environmental Stability of Arsenic in Arsenic-Containing Copper Slag Tailing
by Mu You, Yunhu Hu, Chuncai Zhou and Guijian Liu
Molecules 2024, 29(7), 1502; https://doi.org/10.3390/molecules29071502 - 27 Mar 2024
Cited by 7 | Viewed by 2184
Abstract
The increasing presence of arsenic-containing impurities within Cu ores can adversely affect the smelting process and aggravate the environmental impact of slag tailing. This study investigates the geochemical, mineralogical, and chemical speciation characteristics to better understand the association and environmental stability of metal(loid)s [...] Read more.
The increasing presence of arsenic-containing impurities within Cu ores can adversely affect the smelting process and aggravate the environmental impact of slag tailing. This study investigates the geochemical, mineralogical, and chemical speciation characteristics to better understand the association and environmental stability of metal(loid)s in copper slag tailing. The results indicate that the predominant chemical compositions of the selected slag tailing are Fe2O3 (54.8%) and SiO2 (28.1%). These tailings exhibit potential for multi-elemental contamination due to elevated concentrations of environmentally sensitive elements. Mineral phases identified within the slag tailings include silicate (fayalite), oxides (magnetite and hematite), and sulfides (galena, sphalerite, arsenopyrite, and chalcopyrite). The consistent presence of silicate, iron, arsenic, and oxygen in the elemental distribution suggests the existence of arsenic within silicate minerals in the form of Si-Fe-As-O phases. Additionally, arsenic shows association with sulfide minerals and oxides. The percentages of arsenite (As(III)) and arsenate (As(V)) within the selected slag tailings are 59.4% and 40.6%, respectively. While the slag tailings are deemed non-hazardous due to the minimal amounts of toxic elements in leachates, proper disposal measures should be taken due to the elevated carbonate-bound levels of As and Cu present in these tailings. Full article
Show Figures

Figure 1

36 pages, 5708 KB  
Article
Behavior of Tantalum in a Fe-Dominated Synthetic Fayalitic Slag System—Phase Analysis and Incorporation
by Thomas Schirmer, Jessica Hiller, Joao Weiss, Daniel Munchen, Hugo Lucas, Ursula E. A. Fittschen and Bernd Friedrich
Minerals 2024, 14(3), 262; https://doi.org/10.3390/min14030262 - 29 Feb 2024
Cited by 6 | Viewed by 3238
Abstract
Pyrometallurgical processes produce slags that may contain valuable elements because of their high oxygen affinity. However, the concentration is extremely low, which causes losses. In fact, these elements, for example, tantalum and rare earth elements, are less than 1% recycled. To return such [...] Read more.
Pyrometallurgical processes produce slags that may contain valuable elements because of their high oxygen affinity. However, the concentration is extremely low, which causes losses. In fact, these elements, for example, tantalum and rare earth elements, are less than 1% recycled. To return such technologically important elements to the material cycle, pyrometallurgically is used to enrich them in the simplest possible compounds within the slag, which have favorable properties for recovery (morphology, crystal size, magnetic properties), allowing further mechanical separation. The purpose of modification of the slag system is to obtain engineered artificial minerals” (EnAM), a process in which targeted minerals with high element concentration are formed. In this article, this approach is investigated using tantalum-rich fayalitic slag, since this slag is commonly found in the industry for the pyrometallurgical treatment of waste electric and electronic equipment. Synthetic fayalitic slags in reducing environment under different cooling rates were produced with Ta addition. The characterization of the produced samples was carried out using powder X-ray diffraction (PXRD) and electron probe microanalysis (EPMA). Additionally, the speciation of Fe and Ta was accessible through X-ray absorption near-edge structure (XANES) spectroscopy. EPMA also provided a semiquantitative assessment of the Ta distribution in these individual compounds. In these slags, tantalum accumulated in perovskite-like oxidic and silicate compounds as well as in magnetic iron oxides. The enrichment factor is highest in tantalite/perovskite-type oxides (FexTayO6, CaxFeyTazO3) with up to 60 wt.% Ta and ‘tantalomagnetite’ (FeII(FeIII(2-5/3x)Tax)O4) with a maximum of ~30 wt.% Ta (only fast cooling). This is followed by a perovskite-like silicon containing oxide (XYO3) with 12–15 wt.% Ta (only slow cooling), and a hedenbergite-like compound (XYZ2O6) with a varying content of 0.3–7 wt.%. The Ta concentration in pure Fe, Fe(1-x)O, hercynitic spinel and hematite is negligible. Despite the very low phase fraction, the most promising EnAM compound is nevertheless perovskite-like tantalum oxide, as the highest enrichment factor was obtained. Tantalum-rich magnetite-like oxides also could be promising. Full article
Show Figures

Figure 1

19 pages, 9426 KB  
Article
Study on Extraction Valuable Metal Elements by Co-Roasting Coal Gangue with Coal Gasification Coarse Slag
by Jincheng Zhao, Tao Yu, Huan Zhang, Yu Zhang, Lanting Ma, Jinling Li, Chengtun Qu and Te Wang
Molecules 2024, 29(1), 130; https://doi.org/10.3390/molecules29010130 - 25 Dec 2023
Cited by 7 | Viewed by 2459
Abstract
Coal gangue (CG) and coal gasification coarse slag (CGCS) possess both hazardous and resourceful attributes. The present study employed co-roasting followed by H2SO4 leaching to extract Al and Fe from CG and CGCS. The activation behavior and phase transformation mechanism [...] Read more.
Coal gangue (CG) and coal gasification coarse slag (CGCS) possess both hazardous and resourceful attributes. The present study employed co-roasting followed by H2SO4 leaching to extract Al and Fe from CG and CGCS. The activation behavior and phase transformation mechanism during the co-roasting process were investigated through TG, XRD, FTIR, and XPS characterization analysis as well as Gibbs free energy calculation. The results demonstrate that the leaching rate of total iron (TFe) reached 79.93%, and Al3+ achieved 43.78% under the optimized experimental conditions (co-roasting process: CG/CGCS mass ratio of 8/2, 600 °C, 1 h; H2SO4 leaching process: 30 wt% H2SO4, 90 °C, 5 h, liquid to solid ratio of 5:1 mL/g). Co-roasting induced the conversion of inert kaolinite to active metakaolinite, subsequently leading to the formation of sillimanite (Al2SiO5) and hercynite (FeAl2O4). The iron phases underwent a selective transformation in the following sequence: hematite (Fe2O3) → magnetite (Fe3O4) → wustite (FeO) → ferrosilite (FeSiO3), hercynite (FeAl2O4), and fayalite (Fe2SiO4). Furthermore, we found that acid solution and leached residue both have broad application prospects. This study highlights the significant potential of co-roasting CG and CGCS for high-value utilization. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Rechargeable Batteries)
Show Figures

Figure 1

10 pages, 3155 KB  
Brief Report
Copper Sulfation from Enargite Roasting Using Coal and Fayalite Slag Mixture
by Miguel Véliz, Alvaro Aracena, Oscar Jerez, Manuel Pérez-Tello and Eduardo Balladares
Minerals 2023, 13(12), 1489; https://doi.org/10.3390/min13121489 - 28 Nov 2023
Cited by 2 | Viewed by 1822
Abstract
In this work, the roasting of an enargite mix was carried out in oxidative conditions. The temperature range of the study was 773–973 K. The mixture had a 4:6:6 molar ratio of enargite, magnetite and coal, respectively. The roasting was made in an [...] Read more.
In this work, the roasting of an enargite mix was carried out in oxidative conditions. The temperature range of the study was 773–973 K. The mixture had a 4:6:6 molar ratio of enargite, magnetite and coal, respectively. The roasting was made in an open atmosphere. The time was 1 h for each isothermal test. The effect of temperature and weight loss were studied. The results indicate that the temperature affects the products. At 773–873 K, the copper phases were sulfates. When the temperature was increased to 973 K, all the present phases were oxidized, and no arsenic phase was encountered in the XRDs. Therefore, this process is an excellent alternative for roasting copper concentrates with enargite, removing arsenic in the gas phase and generating a calcine that could then go to lixiviation to finally recover the copper through electrowinning. Full article
(This article belongs to the Special Issue Thermodynamics, Mechanism and Kinetics of Metallurgical Processes)
Show Figures

Figure 1

Back to TopTop