Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = facial muscle activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 464 KiB  
Review
Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential
by Rodrigo Álvaro Brandão Lopes-Martins, Francisco Gonzalez-Lima, Sérgio Gomes da Silva, Patrícia Sardinha Leonardo, Cristiane Soncino, Roberto Fernandes Pacheco, Carolina Lúcia de Oliveira e Oliveira and Fabrizio dos Santos Cardoso
Life 2025, 15(8), 1206; https://doi.org/10.3390/life15081206 - 28 Jul 2025
Viewed by 365
Abstract
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist [...] Read more.
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist for several weeks or even months, with no standardized method currently available to accelerate recovery. Objective: This article explores the hypothesis that photobiomodulation (PBM)—a non-invasive modality recognized for its neuroregenerative potential—may facilitate the reversal of BoNT/A-induced neuromuscular blockade. Discussion: PBM enhances mitochondrial activity by stimulating cytochrome c oxidase in nerve and muscle tissues, thereby increasing ATP production and modulating intracellular signaling pathways associated with neuroplasticity, cell survival, and synaptogenesis. Preclinical studies have demonstrated that PBM can upregulate neurotrophic factors (e.g., BDNF, NGF), enhance SNAP-25 expression, and promote structural remodeling of neurons in both young and aged brains. These mechanisms are biologically consistent with the regenerative processes required for recovery from BoNT/A-induced effects. While controlled clinical trials for this specific application are currently lacking, anecdotal clinical reports suggest that PBM may accelerate functional recovery in cases of BoNT/A-related complications. Conclusions: Although this approach has not yet been tested in clinical trials, we propose that photobiomodulation may hypothetically serve as a supportive strategy to promote neuromuscular recovery in patients experiencing adverse effects from BoNT/A. This hypothesis is grounded in robust preclinical evidence but requires validation through translational and clinical research. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 1084 KiB  
Article
Dynamic Changes in Mimic Muscle Tone During Early Orthodontic Treatment: An sEMG Study
by Oskar Komisarek, Roksana Malak and Paweł Burduk
J. Clin. Med. 2025, 14(14), 5048; https://doi.org/10.3390/jcm14145048 - 16 Jul 2025
Viewed by 273
Abstract
Background: Surface electromyography (sEMG) enables the non-invasive assessment of muscle activity and is widely used in orthodontics for evaluating masticatory muscles. However, little is known about the dynamic changes in facial expression muscles during orthodontic treatment. This study aimed to investigate alterations in [...] Read more.
Background: Surface electromyography (sEMG) enables the non-invasive assessment of muscle activity and is widely used in orthodontics for evaluating masticatory muscles. However, little is known about the dynamic changes in facial expression muscles during orthodontic treatment. This study aimed to investigate alterations in facial muscle tone during the leveling and alignment phase in adult female patients undergoing fixed appliance therapy. Methods: The study included 30 female patients aged 20–31 years who underwent sEMG assessment at four time points: before treatment initiation (T0), at the start of appliance placement (T1), three months into treatment (T2), and six months into treatment (T3). Muscle activity was recorded during four standardized facial expressions: eye closure, nasal strain, broad smile, and lip protrusion. Electrodes were placed on the orbicularis oris, orbicularis oculi, zygomaticus major, and levator labii superioris alaeque nasi muscles. A total of 1440 measurements were analyzed using Friedman and Conover-Inman tests (α = 0.05). Results: Significant changes in muscle tone were observed during treatment. During lip protrusion, the orbicularis oris and zygomaticus major showed significant increases in peak and minimum activity (p < 0.01). Eye closure was associated with altered orbicularis oris activation bilaterally at T3 (p < 0.01). Nasal strain induced significant changes in zygomaticus and levator labii muscle tone, particularly on the right side (p < 0.05). No significant changes were noted during broad smiling. Conclusions: Orthodontic leveling and alignment influence the activity of selected facial expression muscles, demonstrating a dynamic neuromuscular adaptation during treatment. These findings highlight the importance of considering soft tissue responses in orthodontic biomechanics and suggest potential implications for facial esthetics and muscle function monitoring. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

14 pages, 2219 KiB  
Article
Digital Image Speckle Correlation (DISC): Facial Muscle Tracking for Neurological and Psychiatric Disorders
by Shi Fu, Pawel Polak, Susan Fiore, Justin N. Passman, Raphael Davis, Lucian M. Manu and Miriam Rafailovich
Diagnostics 2025, 15(13), 1574; https://doi.org/10.3390/diagnostics15131574 - 20 Jun 2025
Viewed by 499
Abstract
Background/Objectives: Quantitative assessments of facial muscle function and cognitive responses can enhance the clinic evaluations in neuromuscular disorders such as Bell’s palsy and psychiatric conditions including anxiety and depression. This study explored the application of Digital Image Speckle Correlation (DISC) in detecting [...] Read more.
Background/Objectives: Quantitative assessments of facial muscle function and cognitive responses can enhance the clinic evaluations in neuromuscular disorders such as Bell’s palsy and psychiatric conditions including anxiety and depression. This study explored the application of Digital Image Speckle Correlation (DISC) in detecting enervation of facial musculature and assessing reaction times in response to visual stimuli. Methods: A consistent video recording setup was used to capture facial movements of human subjects in response to visual stimuli from a calibrated database. The DISC method utilizes the displacement of naturally occurring skin pores to map the specific locus of underlying muscular movement. The technique was applied to two distinct case studies: Patient 1 had unilateral Bell’s palsy and was monitored for 1 month of recovery. Patient 2 had a comorbidity of refractory depression and anxiety disorders with ketamine treatment and was assessed over 3 consecutive weekly visits. For patient 1, facial asymmetry was calculated by comparing left-to-right displacement signals. For patient 2, visual reaction time was measured, and facial motion intensity and response rate were compared with self-reported depression and anxiety scales. Results: DISC effectively mapped biomechanical properties of facial motions, providing detailed spatial and temporal resolution of muscle activity. In a control cohort of 10 subjects, when executing a facial expression, the degree of left/right facial asymmetry was determined to be 13.2 (8)%. And showed a robust response in an average of 275 (81) milliseconds to five out of the five images shown. For patient 1, obtained an initial asymmetry of nearly 100%, which decreased steadily to 20% in one month, demonstrating a progressive recovery. Patient 2 exhibited a prolonged reaction time of 518 (93) milliseconds and reduced response rates compared with controls of 275 (81) milliseconds and a decrease in the overall rate of response relative to the control group. The data obtained before treatment in three visits correlated strongly with selected depression and anxiety scores. Conclusions: These findings highlight the utility of DISC in enhancing clinical monitoring, complementing traditional examinations and self-reported measures. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

12 pages, 758 KiB  
Study Protocol
Understanding COVID-19 Vaccine Hesitancy: A Neuroscientific Protocol
by Francesca Pisano, Simona Massimino, Giuseppe Craparo, Gabriella Martino, Francesco Tomaiuolo, Vanni Caruso, Alessio Avenanti and Carmelo Mario Vicario
Brain Sci. 2025, 15(6), 563; https://doi.org/10.3390/brainsci15060563 - 24 May 2025
Viewed by 946
Abstract
Background: Vaccine hesitancy (VH) is a significant public health challenge, especially during the COVID-19 pandemic. Despite extensive research on the psychological and socio-political determinants of VH, its psychophysiological mechanisms remain unexplored. Grounded in the Somatic Marker Hypothesis, this study aims to investigate the [...] Read more.
Background: Vaccine hesitancy (VH) is a significant public health challenge, especially during the COVID-19 pandemic. Despite extensive research on the psychological and socio-political determinants of VH, its psychophysiological mechanisms remain unexplored. Grounded in the Somatic Marker Hypothesis, this study aims to investigate the neurophysiological and affective processes underlying VH. Methods: Two experiments will assess sensorimotor resonance and affective processes in VH. In the first experiment, motor-evoked potentials (MEPs) will be recorded from the deltoid and extensor carpi radialis muscles while participants view images of people receiving COVID-19 and influenza vaccines, as well as blood injections (Block 1), and images of vial containing the same substances (Block 2). Facial electromyographic (EMG) activity will measure disgust and fear responses. In the second experiment, skin conductance response (SCR) will be recorded during a virtual reality-based fear conditioning and extinction paradigm. Expected Outcomes: We hypothesize that vaccine-hesitant individuals will exhibit altered sensorimotor resonance, higher affective responses to vaccination stimuli, and impaired fear extinction learning. Psychological traits such as disgust sensitivity, paranoia, anxiety, and dogmatism are expected to be associated with VH. Conclusions: By identifying the psychophysiological mechanisms of VH, this study will contribute to developing effective vaccine promotion strategies to address future public health emergencies. Full article
Show Figures

Figure 1

20 pages, 3422 KiB  
Article
Hands-Free Human–Machine Interfaces Using Piezoelectric Sensors and Accelerometers for Simulated Wheelchair Control in Older Adults and People with Physical Disabilities
by Charoenporn Bouyam, Nannaphat Siribunyaphat, Dollaporn Anopas, May Thu and Yunyong Punsawad
Sensors 2025, 25(10), 3037; https://doi.org/10.3390/s25103037 - 12 May 2025
Viewed by 1593
Abstract
Human–machine interface (HMI) systems are increasingly utilized to develop assistive technologies for individuals with disabilities and older adults. This study proposes two HMI systems using piezoelectric sensors to detect facial muscle activations from eye and tongue movements, and accelerometers to monitor head movements. [...] Read more.
Human–machine interface (HMI) systems are increasingly utilized to develop assistive technologies for individuals with disabilities and older adults. This study proposes two HMI systems using piezoelectric sensors to detect facial muscle activations from eye and tongue movements, and accelerometers to monitor head movements. This system enables hands-free wheelchair control for those with physical disabilities and speech impairments. A prototype wearable sensing device was also designed and implemented. Four commands can be generated using each sensor to steer the wheelchair. We conducted tests in offline and real-time scenarios to assess efficiency and usability among older volunteers. The head–machine interface achieved greater efficiency than the face–machine interface. The simulated wheelchair control tests showed that the head–machine interface typically required twice the time of joystick control, whereas the face–machine interface took approximately four times longer. Participants noted that the head-mounted wearable device was flexible and comfortable. Both modalities can be used for wheelchair control, especially the head–machine interface for patients retaining head movement. In severe cases, the face–machine interface can be used. Moreover, hybrid control can be employed to satisfy specific requirements. Compared to current commercial devices, the proposed HMIs provide lower costs, easier fabrication, and greater adaptability for real-world applications. We will further verify and improve the proposed devices for controlling a powered wheelchair, ensuring practical usability for people with paralysis and speech impairments. Full article
(This article belongs to the Special Issue Wearable Sensors, Robotic Systems and Assistive Devices)
Show Figures

Figure 1

10 pages, 1049 KiB  
Article
Effects of Age, Gender and Laterality on the sEMG of the Orbicularis Oculi in Healthy Adults
by Larysa Krajewska-Węglewicz and Małgorzata Dorobek
J. Clin. Med. 2025, 14(9), 3119; https://doi.org/10.3390/jcm14093119 - 30 Apr 2025
Viewed by 342
Abstract
Background/Objective: The orbicularis oculi muscle (OOM) is crucial for eyelid function and ocular protection. Surface electromyography (sEMG) is a useful tool for assessing OOM activity, but interpretation remains limited due to a lack of standardized reference values. This study investigates the influence [...] Read more.
Background/Objective: The orbicularis oculi muscle (OOM) is crucial for eyelid function and ocular protection. Surface electromyography (sEMG) is a useful tool for assessing OOM activity, but interpretation remains limited due to a lack of standardized reference values. This study investigates the influence of gender, laterality, and age on OOM activity using sEMG. Methods: In total, 84 healthy adult participants (44 females and 40 males) underwent sEMG measurements for both eyes during gentle (GEC) and maximal (MVC) voluntary eyelid closure. Results: The average age was 62.5 years (ranging from 27 to 86; SD = 13.79) for males, and 63.12 years (ranging from 27 to 87; SD = 13.8) for females. The mean Root Mean Square (RMS) MVC values were 157.80 ± 56.43 for men and 146.45 ± 56.48 for women. The mean RMS GEC values were 7.42 ± 2.94 for men and 8.35 ± 4.86 for female. No significant gender-based differences were found (p-value = 0.195 and 0.138, respectively). No significant differences between sides were found: The mean RMS MVC values were 152.24 ± 57.73 for left eyes and 151.47 ± 55.74 for right eyes (p-value = 0.93). The mean RMS GEC values were 8.29 ± 5.04 for left eyes and 7.53 ± 2.79 for right eyes (p-value = 0.227). The age of participants correlated negatively with maximal amplitude, mean amplitude, RMS and the difference between RMS and RMS baseline in MVC (p-value < 0.001). Conclusions: While OOM function remains consistent across gender and between eyes, aging contributes to a decline in OOM performance. Age-adjusted reference values may be beneficial in clinical and research applications assessing facial muscle function. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

13 pages, 1346 KiB  
Article
The POLG Variant c.678G>C; p.(Gln226His) Is Associated with Mitochondrial Abnormalities in Fibroblasts Derived from a Patient Compared to a First-Degree Relative
by Imra Mantey, Felix Langerscheidt, Çağla Çakmak Durmaz, Naomi Baba, Katharina Burghardt, Mert Karakaya and Hans Zempel
Genes 2025, 16(2), 198; https://doi.org/10.3390/genes16020198 - 5 Feb 2025
Cited by 1 | Viewed by 1225
Abstract
Background: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the [...] Read more.
Background: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the catalytic subunit of Pol-γ, can significantly impair Pol-γ enzyme function. Pol-γ-associated disorders are referred to as POLG-spectrum disorders (POLG-SDs) and are mainly autosomal-recessively inherited. Clinical manifestations include muscle weakness and fatigue, and severe forms of the disease can lead to premature death in infancy, childhood, and early adulthood, often associated with seizures, liver failure, or intractable epilepsy. Here, we analyzed fibroblasts from a compound heterozygous patient with the established pathogenic variant c.2419C>T; p.(Arg807Cys) and a previously undescribed variant c.678G>C; p.(Gln226His) with a clinical manifestation compatible with POLG-SDs, sensory ataxic neuropathy, and infantile muscular atrophy. We conducted a battery of functional studies for Pol-γ and mitochondrial dysfunction on the patient’s fibroblasts, to test whether the novel variant c.678G>C; p.(Gln226His) may be causative in human disease. Aims/Methods: We analyzed skin-derived fibroblasts in comparison to a first-degree relative (the mother of the patient), an asymptomatic carrier harboring only the established c.2419C>T; p.(Arg807Cys) mutation. Assessments of mitochondrial function included measurements of mtDNA content, mRNA levels of mitochondrial genes, mitochondrial mass, and mitochondrial morphology. Case Presentation and Results: A 13-year-old male presented with symptoms starting at three years of age, including muscle weakness and atrophy in the lower extremities and facial muscles, which later extended to the upper limbs, voice, and back muscles, without further progression. The patient also reported fatigue and muscle pain after physical activity, with no sensory deficits. Extensive diagnostic tests such as electromyography, nerve conduction studies, muscle biopsy, and MRI were unremarkable. Exome sequencing revealed that he carried the compound heterozygous variants in POLG c.678G>C; p.(Gln226His) and c.2419C>T; p.(Arg807Cys), but no other potential genetic pathogenic causes. In comparison to a first-degree relative (his mother) who only carried the c.2419C>T; p.(Arg807Cys) pathogenic mutation, in vitro analyses revealed a significant reduction in mtDNA content (~50%) and mRNA levels of mtDNA-encoded proteins. Mitochondrial mass was reduced by approximately 20%, and mitochondrial interconnectivity within cells was impaired, as determined by fluorescence microscopy and mitochondrial staining. Conclusions: Our findings suggest that the c.678G>C; p.(Gln226His) variant, in conjunction with the c.2419C>T; p.(Arg807Cys) mutation, may compromise mtDNA replication and mitochondrial function and could result in clinically significant mitochondriopathy. As this study is based on one patient compared to a first-degree relative (but with an identical mitochondrial genome), the pathogenicity of c.678G>C; p.(Gln226His) of POLG should be confirmed in future studies, in particular, in conjunction with other POLG-variants. Full article
Show Figures

Figure 1

18 pages, 29962 KiB  
Article
Eliciting Emotions: Investigating the Use of Generative AI and Facial Muscle Activation in Children’s Emotional Recognition
by Manuel A. Solis-Arrazola, Raul E. Sanchez-Yanez, Ana M. S. Gonzalez-Acosta, Carlos H. Garcia-Capulin and Horacio Rostro-Gonzalez
Big Data Cogn. Comput. 2025, 9(1), 15; https://doi.org/10.3390/bdcc9010015 - 20 Jan 2025
Viewed by 2312
Abstract
This study explores children’s emotions through a novel approach of Generative Artificial Intelligence (GenAI) and Facial Muscle Activation (FMA). It examines GenAI’s effectiveness in creating facial images that produce genuine emotional responses in children, alongside FMA’s analysis of muscular activation during these expressions. [...] Read more.
This study explores children’s emotions through a novel approach of Generative Artificial Intelligence (GenAI) and Facial Muscle Activation (FMA). It examines GenAI’s effectiveness in creating facial images that produce genuine emotional responses in children, alongside FMA’s analysis of muscular activation during these expressions. The aim is to determine if AI can realistically generate and recognize emotions similar to human experiences. The study involves generating a database of 280 images (40 per emotion) of children expressing various emotions. For real children’s faces from public databases (DEFSS and NIMH-CHEFS), five emotions were considered: happiness, angry, fear, sadness, and neutral. In contrast, for AI-generated images, seven emotions were analyzed, including the previous five plus surprise and disgust. A feature vector is extracted from these images, indicating lengths between reference points on the face that contract or expand based on the expressed emotion. This vector is then input into an artificial neural network for emotion recognition and classification, achieving accuracies of up to 99% in certain cases. This approach offers new avenues for training and validating AI algorithms, enabling models to be trained with artificial and real-world data interchangeably. The integration of both datasets during training and validation phases enhances model performance and adaptability. Full article
(This article belongs to the Special Issue Perception and Detection of Intelligent Vision)
Show Figures

Figure 1

11 pages, 243 KiB  
Review
Sex Influence on Trigeminal Nerve Stimulation and Breath-Hold Diving Performance: Examination of the Autonomic Regulation of Cardiovascular Responses to Facial Cooling and Apnoea Across Sex and Varied Factors
by Krzysztof S. Malinowski, Magdalena Wszędybył-Winklewska and Paweł J. Winklewski
NeuroSci 2025, 6(1), 3; https://doi.org/10.3390/neurosci6010003 - 4 Jan 2025
Viewed by 1577
Abstract
This review emphasises the importance of the cardiovascular response to facial cooling (FC) and breath holding in both sexes. The trigemino-cardiac reflex, triggered by FC, reduces heart rate (HR) and constricts blood vessels. When combined with breath holding, this effect intensifies, enhancing the [...] Read more.
This review emphasises the importance of the cardiovascular response to facial cooling (FC) and breath holding in both sexes. The trigemino-cardiac reflex, triggered by FC, reduces heart rate (HR) and constricts blood vessels. When combined with breath holding, this effect intensifies, enhancing the cardiodepressive impact. The cardiovascular reaction to this combination, known as the cold-water face immersion or simulated diving test, varies among individuals and depends on their cardiovascular regulatory profiles, which differ between men and women. Despite extensive research on the cardiovascular response to FC and apnoea, most studies did not categorise participants by sex, leading to a limited understanding of how it influences trigeminal nerve stimulation (TGS) and breath-hold diving (BHD). Despite attempts to address this, the existing findings remain inconsistent due to intra- and inter-individual variability. Key factors influencing the diving response include the influence of the parasympathetic system on HR, vascular sympathetic activity affecting total peripheral resistance (TPR), sensitivity to CO2, lung capacity, training, physical performance, duration of apnoea, and the stimulation of metaboreceptors in working muscles. These factors differ between men and women, potentially contributing to variations in the effectiveness of the response to the FC combined with breath holding. Full article
40 pages, 20840 KiB  
Article
Facial Biosignals Time–Series Dataset (FBioT): A Visual–Temporal Facial Expression Recognition (VT-FER) Approach
by João Marcelo Silva Souza, Caroline da Silva Morais Alves, Jés de Jesus Fiais Cerqueira, Wagner Luiz Alves de Oliveira, Orlando Mota Pires, Naiara Silva Bonfim dos Santos, Andre Brasil Vieira Wyzykowski, Oberdan Rocha Pinheiro, Daniel Gomes de Almeida Filho, Marcelo Oliveira da Silva and Josiane Dantas Viana Barbosa
Electronics 2024, 13(24), 4867; https://doi.org/10.3390/electronics13244867 - 10 Dec 2024
Viewed by 1357
Abstract
Visual biosignals can be used to analyze human behavioral activities and serve as a primary resource for Facial Expression Recognition (FER). FER computational systems face significant challenges, arising from both spatial and temporal effects. Spatial challenges include deformations or occlusions of facial geometry, [...] Read more.
Visual biosignals can be used to analyze human behavioral activities and serve as a primary resource for Facial Expression Recognition (FER). FER computational systems face significant challenges, arising from both spatial and temporal effects. Spatial challenges include deformations or occlusions of facial geometry, while temporal challenges involve discontinuities in motion observation due to high variability in poses and dynamic conditions such as rotation and translation. To enhance the analytical precision and validation reliability of FER systems, several datasets have been proposed. However, most of these datasets focus primarily on spatial characteristics, rely on static images, or consist of short videos captured in highly controlled environments. These constraints significantly reduce the applicability of such systems in real-world scenarios. This paper proposes the Facial Biosignals Time–Series Dataset (FBioT), a novel dataset providing temporal descriptors and features extracted from common videos recorded in uncontrolled environments. To automate dataset construction, we propose Visual–Temporal Facial Expression Recognition (VT-FER), a method that stabilizes temporal effects using normalized measurements based on the principles of the Facial Action Coding System (FACS) and generates signature patterns of expression movements for correlation with real-world temporal events. To demonstrate feasibility, we applied the method to create a pilot version of the FBioT dataset. This pilot resulted in approximately 10,000 s of public videos captured under real-world facial motion conditions, from which we extracted 22 direct and virtual metrics representing facial muscle deformations. During this process, we preliminarily labeled and qualified 3046 temporal events representing two emotion classes. As a proof of concept, these emotion classes were used as input for training neural networks, with results summarized in this paper and available in an open-source online repository. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

19 pages, 5047 KiB  
Article
A Convolutional Neural Network for the Removal of Simultaneous Ocular and Myogenic Artifacts from EEG Signals
by Maryam Azhar, Tamoor Shafique and Anas Amjad
Electronics 2024, 13(22), 4576; https://doi.org/10.3390/electronics13224576 - 20 Nov 2024
Cited by 2 | Viewed by 2315
Abstract
Electroencephalography (EEG) is a non-invasive technique widely used in neuroscience to diagnose neural disorders and analyse brain activity. However, ocular and myogenic artifacts from eye movements and facial muscle activity often contaminate EEG signals, compromising signal analysis accuracy. While deep learning models are [...] Read more.
Electroencephalography (EEG) is a non-invasive technique widely used in neuroscience to diagnose neural disorders and analyse brain activity. However, ocular and myogenic artifacts from eye movements and facial muscle activity often contaminate EEG signals, compromising signal analysis accuracy. While deep learning models are a popular choice for denoising EEG signals, most focus on removing either ocular or myogenic artifacts independently. This paper introduces a novel EEG denoising model capable of handling the simultaneous occurrence of both artifacts. The model uses convolutional layers to extract spatial features and a fully connected layer to reconstruct clean signals from learned features. The model integrates the Adam optimiser, average pooling, and ReLU activation to effectively capture and restore clean EEG signals. It demonstrates superior performance, achieving low training and validation losses with a significantly reduced RRMSE value of 0.35 in both the temporal and spectral domains. A high cross-correlation coefficient of 0.94 with ground-truth EEG signals confirms the model’s fidelity. Compared to the existing architectures and models (FPN, UNet, MCGUNet, LinkNet, MultiResUNet3+, Simple CNN, Complex CNN) across a range of signal-to-noise ratio values, the model shows superior performance for artifact removal. It also mitigates overfitting, underscoring its robustness in artifact suppression. Full article
Show Figures

Figure 1

32 pages, 2311 KiB  
Article
Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function
by Manuela Moriggi, Lucia Ruggiero, Enrica Torretta, Dario Zoppi, Beatrice Arosio, Evelyn Ferri, Alessandra Castegna, Chiara Fiorillo, Cecilia Gelfi and Daniele Capitanio
Antioxidants 2024, 13(11), 1406; https://doi.org/10.3390/antiox13111406 - 16 Nov 2024
Cited by 3 | Viewed by 1739
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely [...] Read more.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD. Full article
Show Figures

Figure 1

12 pages, 1344 KiB  
Article
Intraoperative Facial Nerve Monitoring during Parotidectomy: The Current Practices and Patterns of the Korean Society of Head and Neck Surgery (KSHNS)
by Dongbin Ahn, Ji Hye Kwak, Geun-Jeon Kim, Heejin Kim, Dong Won Lee and Kwang Jae Cho
Diagnostics 2024, 14(20), 2277; https://doi.org/10.3390/diagnostics14202277 - 13 Oct 2024
Viewed by 1864
Abstract
Objectives: This study aimed to evaluate the current practices and trends of intraoperative facial nerve (FN) monitoring (IOFNM) during parotidectomy. Methods: A questionnaire containing 33 questions collecting information on the usage, indications, settings, techniques, loss of signal (LOS) management, anesthesiologist cooperation, and perception [...] Read more.
Objectives: This study aimed to evaluate the current practices and trends of intraoperative facial nerve (FN) monitoring (IOFNM) during parotidectomy. Methods: A questionnaire containing 33 questions collecting information on the usage, indications, settings, techniques, loss of signal (LOS) management, anesthesiologist cooperation, and perception of usefulness of IOFNM was distributed among 348 members of the Korean Society of Head and Neck Surgery (KSHNS) via a dedicated website. Results: The response rate was approximately 25.6%, and 97% of the respondents reported using IOFNM selectively or routinely during parotidectomy. IOFNM usage decreased as the surgeon’s level of experience increased (p = 0.089), from 100% in those with less than 5 years of experience to 75% in those with 20 or more years. Approximately 95% of respondents reported that the initial event threshold for electromyography activity used was 50–149 μV. Moreover, 52.4% of respondents performed neural mapping of the FN before visual identification. Initial management of LOS in visually intact FNs included checking the IOFNM system (75.3%), confirmation of muscle relaxant dosage (75.3%), and facial twitch identification (58.8%). Further management included proceeding with surgery regardless of persistent LOS (81.2%) and steroid administration sometimes or all of the time (72.9%). Overall, 98.8% of respondents found IOFNM beneficial for safe execution of parotidectomy. Conclusions: The majority of KSHNS surgeons used IOFNM during parotidectomy, although the clinical implementation of the procedure and LOS management varied between practitioners. This could be attributed to the lack of standardized protocols for IOFNM, emphasizing the need for the development of evidence-based consensus guidelines for all institutions. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Head and Neck Disease)
Show Figures

Figure 1

17 pages, 1200 KiB  
Article
Linking Affect Dynamics and Well-Being: A Novel Methodological Approach for Mental Health
by Gloria Simoncini, Francesca Borghesi and Pietro Cipresso
Healthcare 2024, 12(17), 1690; https://doi.org/10.3390/healthcare12171690 - 24 Aug 2024
Cited by 2 | Viewed by 1445
Abstract
Emotions are dynamic processes; their variability relates to psychological well-being and psychopathology. Affective alterations have been linked to mental diseases like depression, although little is known about how similar patterns occur in healthy individuals. This study investigates the psychophysiological correlations of emotional processing [...] Read more.
Emotions are dynamic processes; their variability relates to psychological well-being and psychopathology. Affective alterations have been linked to mental diseases like depression, although little is known about how similar patterns occur in healthy individuals. This study investigates the psychophysiological correlations of emotional processing in healthy subjects, specifically exploring the relationship between depressive traits, cognitive distortions, and facial electromyographic (f-EMG) responses during affective transitions. A cohort of 44 healthy participants underwent f-EMG recording while viewing emotional images from the International Affective Picture System (IAPS). Self-report measures included the Beck Depression Inventory (BDI) and the Cognitive Distortion Scale (CDS). Higher BDI scores were associated with increased EMG activity in the corrugator muscle during transitions between positive and negative emotional states. Cognitive distortions such as Catastrophizing, All-or-Nothing Thinking, and Minimization showed significant positive correlations with EMG activity, indicating that individuals with higher levels of these distortions experienced greater facial muscle activation during emotional transitions. This study’s results indicate that there is a bidirectional correlation between depressed features and cognitive distortions and alterations in facial emotional processing, even in healthy subjects. Facial EMG in the context of dynamic affective transitions has the potential to be used as a non-invasive method for detecting abnormal emotional reactions at an early stage. This might help in identifying individuals who are at risk of developing depression and guide therapies to prevent its advancement. Full article
Show Figures

Figure 1

15 pages, 1670 KiB  
Article
Recognition of Dynamic Emotional Expressions in Children and Adults and Its Associations with Empathy
by Yu-Chen Chiang, Sarina Hui-Lin Chien, Jia-Ling Lyu and Chien-Kai Chang
Sensors 2024, 24(14), 4674; https://doi.org/10.3390/s24144674 - 18 Jul 2024
Cited by 3 | Viewed by 2301
Abstract
This present study investigates emotion recognition in children and adults and its association with EQ and motor empathy. Overall, 58 children (33 5–6-year-olds, 25 7–9-year-olds) and 61 adults (24 young adults, 37 parents) participated in this study. Each participant received an EQ questionnaire [...] Read more.
This present study investigates emotion recognition in children and adults and its association with EQ and motor empathy. Overall, 58 children (33 5–6-year-olds, 25 7–9-year-olds) and 61 adults (24 young adults, 37 parents) participated in this study. Each participant received an EQ questionnaire and completed the dynamic emotion expression recognition task, where participants were asked to identify four basic emotions (happy, sad, fearful, and angry) from neutral to fully expressed states, and the motor empathy task, where participants’ facial muscle activity was recorded. The results showed that “happy” was the easiest expression for all ages; 5- to 6-year-old children performed equally well as adults. The accuracies for “fearful,” “angry,” and “sad” expressions were significantly lower in children than in adults. For motor empathy, 7- to 9-year-old children exhibited the highest level of facial muscle activity, while the young adults showed the lowest engagement. Importantly, individual EQ scores positively correlated with the motor empathy index in adults but not in children. In sum, our study echoes the previous literature, showing that the identification of negative emotions is still difficult for children aged 5–9 but that this improves in late childhood. Our results also suggest that stronger facial mimicry responses are positively related to a higher level of empathy in adults. Full article
(This article belongs to the Special Issue Emotion Recognition and Cognitive Behavior Analysis Based on Sensors)
Show Figures

Figure 1

Back to TopTop