Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = eyewall replacement cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2127 KiB  
Review
A Review of Typhoon Inner Core Characteristics and Their Relationship with Intensity Changes
by Shumin Chen and Weibiao Li
Atmosphere 2024, 15(12), 1522; https://doi.org/10.3390/atmos15121522 - 20 Dec 2024
Viewed by 1650
Abstract
The inner core of a typhoon plays a crucial role in storm intensification and is especially critical for rapid increases in storm intensity. Most of the energy exchange occurs in the inner core, including the eyewall. Moist air rising from the warm ocean [...] Read more.
The inner core of a typhoon plays a crucial role in storm intensification and is especially critical for rapid increases in storm intensity. Most of the energy exchange occurs in the inner core, including the eyewall. Moist air rising from the warm ocean releases latent heat, increasing wind speeds and sustaining the warm-core structure through secondary circulations. A deeper understanding of the physical processes in the inner core is essential for improving intensity forecasts and disaster preparedness and mitigation. This paper reviews key studies on the inner core. We focus on lead–lag relationships, eyewall replacement cycles, and waves and oscillations, which are topics that can greatly enhance forecasting capabilities. We highlight limitations of current research and propose key scientific questions that would provide essential insights to improve forecasts and support disaster reduction strategies. These include: (1) what are the physical processes that drive the lead–lag relationship between eyewall convection and intensity changes, and how does the time lag vary across typhoons? (2) What conditions favor merging of the inner and outer eyewalls and completion of the eyewall replacement cycle, potentially leading to rapid intensification before landfall? (3) How do waves and oscillations in the eyewall influence typhoon intensity variations? Full article
(This article belongs to the Special Issue Tropical Cyclones: Observations and Prediction (2nd Edition))
Show Figures

Figure 1

26 pages, 9488 KiB  
Article
The Implementation of Cloud and Vertical Velocity Relocation/Cycling System in the Vortex Initialization of the HAFS
by JungHoon Shin, Zhan Zhang, Bin Liu, Yonghui Weng, Qingfu Liu, Avichal Mehra and Vijay Tallapragada
Atmosphere 2024, 15(8), 1006; https://doi.org/10.3390/atmos15081006 - 20 Aug 2024
Cited by 1 | Viewed by 990
Abstract
The first version operational Hurricane Analysis and Forecast System (HAFS) implemented the Vortex Initialization (VI) technique to optimize tropical cyclone structure and intensity, which was adopted from the Hurricane Weather Research and Forecasting system (HWRF) and does not initialize cloud hydrometeors and vertical [...] Read more.
The first version operational Hurricane Analysis and Forecast System (HAFS) implemented the Vortex Initialization (VI) technique to optimize tropical cyclone structure and intensity, which was adopted from the Hurricane Weather Research and Forecasting system (HWRF) and does not initialize cloud hydrometeors and vertical velocity. This limitation in the VI caused the inconsistency issue between hurricane vortex and its cloud in the model initial condition. A new VI, which can relocate or cycle cloud hydrometeors and vertical velocity, has been developed to solve this issue. For the cold start, the VI simply relocates the cloud and vertical velocity fields of Global Forecasting System (GFS) analysis; for the warm start, the cloud and vertical velocity associated with a hurricane in the GFS analysis are replaced by the fields extracted from the 6 h HAFS forecast of a previous cycle. This new VI has been tested for the 2023 HAFS-A real-time experiment configuration, and another sensitivity experiment without relocating or cycling both cloud and vertical velocity is conducted to examine the effect of the new VI. A comparison of the results reveals that the new VI improves the intensity forecast and generates a very realistic initial cloud field in correct position. Validating the model initial conditions with observed radar data reveals that the new VI captures the secondary eyewall of major hurricanes and asymmetric convective structure of weak tropical storms. This improvement of the cloud field in the model initial condition through the new VI expects to provide a better background for further data assimilation. Additional sensitivity experiment that only relocates or cycles cloud hydrometeors without correcting the vertical velocity field results in poorer intensity forecasts, which highlights the importance of vertical velocity in the model initial condition. Full article
Show Figures

Figure 1

11 pages, 1437 KiB  
Article
The Pairing of Rapid Intensification Events and Eyewall Replacement Cycles in Tropical Cyclones in the Atlantic Basin from 2015 to 2020
by John W. Currier and Ari D. Preston
Atmosphere 2024, 15(1), 53; https://doi.org/10.3390/atmos15010053 - 30 Dec 2023
Viewed by 1936
Abstract
Rapid intensification (RI) and eyewall replacement cycles (ERCs) frequently occur in intense tropical cyclones (TCs), often causing rapid, significant changes in intensity and structure. In some TCs, RI and ERCs can occur concurrently or within a short period of one another. This study [...] Read more.
Rapid intensification (RI) and eyewall replacement cycles (ERCs) frequently occur in intense tropical cyclones (TCs), often causing rapid, significant changes in intensity and structure. In some TCs, RI and ERCs can occur concurrently or within a short period of one another. This study investigates whether there is a link between RI and ERCs by conducting a statistical analysis of TCs that occurred in the North Atlantic basin from 2015 to 2020. The HURDAT2 dataset was used to detect RI events, while the Morphed Integrated Microwave Imagery archive by the Cooperative Institute for Meteorological Satellite Studies was used to detect ERC events. Three sets of data were constructed from this analysis: TCs with paired RI/ERC events that occurred within 24 h of each other, TCs with RI only, and TCs with ERCs only. Statistics selected for analysis within the constructed datasets were mean duration of phenomena, mean rate of intensification, and mean peak intensity. We performed t-tests to determine the statistical significance of results. The results of this study show that TCs with these paired RI/ERC events often intensified at a faster rate, intensified for longer, and ended up stronger than TCs that only experienced RI or ERCs in isolation. Full article
(This article belongs to the Special Issue Student-Led Research in Atmospheric Science (2nd Volume))
Show Figures

Figure 1

22 pages, 503 KiB  
Review
A Simple Family of Tropical Cyclone Models
by Wayne H. Schubert, Richard K. Taft and Christopher J. Slocum
Meteorology 2023, 2(2), 149-170; https://doi.org/10.3390/meteorology2020011 - 28 Mar 2023
Cited by 1 | Viewed by 2764
Abstract
This review discusses a simple family of models capable of simulating tropical cyclone life cycles, including intensification, the formation of the axisymmetric version of boundary layer shocks, and the development of an eyewall. Four models are discussed, all of which are axisymmetric, f [...] Read more.
This review discusses a simple family of models capable of simulating tropical cyclone life cycles, including intensification, the formation of the axisymmetric version of boundary layer shocks, and the development of an eyewall. Four models are discussed, all of which are axisymmetric, f-plane, three-layer models. All four models have the same parameterizations of convective mass flux and air–sea interaction, but differ in their formulations of the radial and tangential equations of motion, i.e., they have different dry dynamical cores. The most complete model is the primitive equation (PE) model, which uses the unapproximated momentum equations for each of the three layers. The simplest is the gradient balanced (GB) model, which replaces the three radial momentum equations with gradient balance relations and replaces the boundary layer tangential wind equation with a diagnostic equation that is essentially a high Rossby number version of the local Ekman balance. Numerical integrations of the boundary layer equations confirm that the PE model can produce boundary layer shocks, while the GB model cannot. To better understand these differences in GB and PE dynamics, we also consider two hybrid balanced models (HB1 and HB2), which differ from GB only in their treatment of the boundary layer momentum equations. Because their boundary layer dynamics is more accurate than GB, both HB1 and HB2 can produce results more similar to the PE model, if they are solved in an appropriate manner. Full article
Show Figures

Figure 1

19 pages, 8320 KiB  
Article
Aircraft and Satellite Observations of Vortex Evolution and Surface Wind Asymmetry of Concentric Eyewalls in Hurricane Irma
by Han Hua, Biao Zhang, Guosheng Zhang, William Perrie, Changlin Chen and Yuanben Li
Remote Sens. 2022, 14(9), 2158; https://doi.org/10.3390/rs14092158 - 30 Apr 2022
Viewed by 2343
Abstract
We compare the vortex evolutions of eyewall replacement cycles (ERCs) between the sea-surface and the free-atmosphere levels and investigate the asymmetric structure of concentric eyewalls (CEs) by examining a combination of aircraft observations and surface wind fields derived from C-band spaceborne synthetic aperture [...] Read more.
We compare the vortex evolutions of eyewall replacement cycles (ERCs) between the sea-surface and the free-atmosphere levels and investigate the asymmetric structure of concentric eyewalls (CEs) by examining a combination of aircraft observations and surface wind fields derived from C-band spaceborne synthetic aperture radar (SAR) images during Hurricane Irma (2017) from 4 September 2017 to 8 September 2017. A total of 116 radial wind profiles measured by an aircraft were collected and showed that ERCs occur at both the sea-surface and the free-atmosphere levels. The outer eyewall was shown to form at the free atmospheric level (~3 km) with a narrow structure at the sea-surface level and an outward tilt with height in the cross-section. In our study, four ERC events were determined from wind profile parameters fitted by a modified Rankine vortex model, which was validated by 328 radial legs collected from six hurricanes. The outer eyewall did not replace the inner eyewall at the sea-surface level in the third ERC, due to the maintenance of a short duration and intense original eyewall. Additionally, Irma’s intensity weakened during the fourth ERC rather than re-intensified, because of the generation of a third wind maximum outside the secondary eyewall. Comparisons of five SAR-derived surface wind fields in Irma and another two hurricane cases illustrated that the location of the secondary eyewall generation is a key point in the interpretation of anomaly intensity changes in the fourth ERC. Full article
Show Figures

Graphical abstract

28 pages, 10311 KiB  
Article
Relationship between Early-Stage Features and Lifetime Maximum Intensity of Tropical Cyclones over the Western North Pacific
by Ren Lu and Xiaodong Tang
Atmosphere 2021, 12(7), 815; https://doi.org/10.3390/atmos12070815 - 24 Jun 2021
Cited by 2 | Viewed by 3775
Abstract
The relationship between early-stage features and lifetime maximum intensity (LMI) of tropical cyclones (TCs) over the Western North Pacific (WNP) was investigated by ensemble machine learning methods and composite analysis in this study. By selecting key features of TCs’ vortex attributes and environmental [...] Read more.
The relationship between early-stage features and lifetime maximum intensity (LMI) of tropical cyclones (TCs) over the Western North Pacific (WNP) was investigated by ensemble machine learning methods and composite analysis in this study. By selecting key features of TCs’ vortex attributes and environmental conditions, a two-step AdaBoost model demonstrated accuracy of about 75% in distinguishing weak and strong TCs at genesis and a coefficient of determination (R2) of 0.30 for LMI estimation from the early stage of strong TCs, suggesting an underlying relationship between LMI and early-stage features. The composite analysis reveals that TCs with higher LMI are characterized by lower latitude embedded in a continuous band of high low-troposphere vorticity, more compact circulation at both the upper and lower levels of the troposphere, stronger circulation at the mid-troposphere, a higher outflow layer with stronger convection, a more symmetrical structure of high-level moisture distribution, a slower translation speed, and a greater intensification rate around genesis. Specifically, TCs with greater “tightness” at genesis may have a better chance of strengthening to major TCs (LMI ≥ 96 kt), since it represents a combination of the inner and outer-core wind structure related to TCs’ rapid intensification and eyewall replacement cycle. Full article
(This article belongs to the Special Issue Rapid Intensity Changes of Tropical Cyclones)
Show Figures

Figure 1

36 pages, 57857 KiB  
Review
Recent Advances in Our Understanding of Tropical Cyclone Intensity Change Processes from Airborne Observations
by Robert F. Rogers
Atmosphere 2021, 12(5), 650; https://doi.org/10.3390/atmos12050650 - 19 May 2021
Cited by 23 | Viewed by 7248
Abstract
Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation [...] Read more.
Recent (past ~15 years) advances in our understanding of tropical cyclone (TC) intensity change processes using aircraft data are summarized here. The focus covers a variety of spatiotemporal scales, regions of the TC inner core, and stages of the TC lifecycle, from preformation to major hurricane status. Topics covered include (1) characterizing TC structure and its relationship to intensity change; (2) TC intensification in vertical shear; (3) planetary boundary layer (PBL) processes and air–sea interaction; (4) upper-level warm core structure and evolution; (5) genesis and development of weak TCs; and (6) secondary eyewall formation/eyewall replacement cycles (SEF/ERC). Gaps in our airborne observational capabilities are discussed, as are new observing technologies to address these gaps and future directions for airborne TC intensity change research. Full article
(This article belongs to the Special Issue Rapid Intensity Changes of Tropical Cyclones)
Show Figures

Figure 1

10 pages, 3483 KiB  
Article
Symmetric Double-Eye Structure in Hurricane Bertha (2008) Imaged by SAR
by Guosheng Zhang and William Perrie
Remote Sens. 2018, 10(8), 1292; https://doi.org/10.3390/rs10081292 - 15 Aug 2018
Cited by 6 | Viewed by 4054
Abstract
Internal dynamical processes play a critical role in hurricane intensity variability. However, our understanding of internal storm processes is less well established, partly because of fewer observations. In this study, we present an analysis of the hurricane double-eye structure imaged by the RADARSAT-2 [...] Read more.
Internal dynamical processes play a critical role in hurricane intensity variability. However, our understanding of internal storm processes is less well established, partly because of fewer observations. In this study, we present an analysis of the hurricane double-eye structure imaged by the RADARSAT-2 cross-polarized synthetic aperture radar (SAR) over Hurricane Bertha (2008). SAR has the capability of hurricane monitoring because of the ocean surface roughness induced by surface wind stress. Recently, the C-band cross-polarized SAR measurements appear to be unsaturated for the high wind speeds, which makes SAR suitable for studies of the hurricane internal dynamic processes, including the double-eye structure. We retrieve the wind field of Hurricane Bertha (2008), and then extract the closest axisymmetric double-eye structure from the wind field using an idealized vortex model. Comparisons between the axisymmetric model extracted wind field and SAR observed winds demonstrate that the double-eye structure imaged by SAR is relatively axisymmetric. Associated with airborne measurements using a stepped-frequency microwave radiometer, we investigate the hurricane internal dynamic process related to the double-eye structure, which is known as the eyewall replacement cycle (ERC). The classic ERC theory was proposed by assuming an axisymmetric storm structure. The ERC internal dynamic process of Hurricane Bertha (2008) related to the symmetric double-eye structure here, which is consistent with the classic theory, is observed by SAR and aircraft. Full article
(This article belongs to the Special Issue Sea Surface Roughness Observed by High Resolution Radar)
Show Figures

Graphical abstract

Back to TopTop