Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = extreme ultraviolet (EUV) photoresist

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12995 KiB  
Review
Progress in Polyhedral Oligomeric Silsesquioxane (POSS) Photoresists: A Comprehensive Review across Lithographic Systems
by Zaoxia Wen, Xingyu Liu, Wenxiu Chen, Ruolin Zhou, Hao Wu, Yongmei Xia and Lianbin Wu
Polymers 2024, 16(6), 846; https://doi.org/10.3390/polym16060846 - 19 Mar 2024
Cited by 7 | Viewed by 4312
Abstract
This paper offers a comprehensive overview of the polyhedral oligomeric silsesquioxane (POSS) and POSS-based composites within the realm of photoresist resin. The study involves a systematic exploration and discussion of the contributions made by POSS across various lithographic systems, with specific emphasis on [...] Read more.
This paper offers a comprehensive overview of the polyhedral oligomeric silsesquioxane (POSS) and POSS-based composites within the realm of photoresist resin. The study involves a systematic exploration and discussion of the contributions made by POSS across various lithographic systems, with specific emphasis on critical parameters such as film formation, sensitivity, resolution, solubility, and edge roughness. These lithographic systems encompass X-ray lithography (XRL), deep ultraviolet nanoimprint lithography (DUV-NIL), extreme ultraviolet lithography (EUV), and guided self-assembled lithography (DSA). The principal objective of this paper is to furnish valuable insights into the development and utilization of POSS-based photoresist materials in diverse lithographic contexts. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 3068 KiB  
Article
Novel Mechanism-Based Descriptors for Extreme Ultraviolet-Induced Photoacid Generation: Key Factors Affecting Extreme Ultraviolet Sensitivity
by Ji Young Park, Hyun-Ji Song, Thanh Cuong Nguyen, Won-Joon Son, Daekeon Kim, Giyoung Song, Suk-Koo Hong, Heeyoung Go, Changmin Park, Inkook Jang and Dae Sin Kim
Molecules 2023, 28(17), 6244; https://doi.org/10.3390/molecules28176244 - 25 Aug 2023
Cited by 7 | Viewed by 3859
Abstract
Predicting photolithography performance in silico for a given materials combination is essential for developing better patterning processes. However, it is still an extremely daunting task because of the entangled chemistry with multiple reactions among many material components. Herein, we investigated the EUV-induced photochemical [...] Read more.
Predicting photolithography performance in silico for a given materials combination is essential for developing better patterning processes. However, it is still an extremely daunting task because of the entangled chemistry with multiple reactions among many material components. Herein, we investigated the EUV-induced photochemical reaction mechanism of a model photoacid generator (PAG), triphenylsulfonium cation, using atomiC–Scale materials modeling to elucidate that the acid generation yield strongly depends on two main factors: the lowest unoccupied molecular orbital (LUMO) of PAG cation associated with the electron-trap efficiency ‘before C–S bond dissociation’ and the overall oxidation energy change of rearranged PAG associated with the proton-generation efficiency ‘after C–S bond dissociation’. Furthermore, by considering stepwise reactions accordingly, we developed a two-parameter-based prediction model predicting the exposure dose of the resist, which outperformed the traditional LUMO-based prediction model. Our model suggests that one should not focus only on the LUMO energies but also on the energy change during the rearrangement process of the activated triphenylsulfonium (TPS) species. We also believe that the model is well suited for computational materials screening and/or inverse design of novel PAG materials with high lithographic performances. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

10 pages, 3738 KiB  
Article
Extreme Ultraviolet Lighting Using Carbon Nanotube-Based Cold Cathode Electron Beam
by Sung Tae Yoo and Kyu Chang Park
Nanomaterials 2022, 12(23), 4134; https://doi.org/10.3390/nano12234134 - 23 Nov 2022
Cited by 10 | Viewed by 2466
Abstract
Laser-based plasma studies that apply photons to extreme ultraviolet (EUV) generation are actively being conducted, and studies by direct electron irradiation on Sn for EUV lighting have rarely been attempted. Here, we demonstrate a novel method of EUV generation by irradiating Sn with [...] Read more.
Laser-based plasma studies that apply photons to extreme ultraviolet (EUV) generation are actively being conducted, and studies by direct electron irradiation on Sn for EUV lighting have rarely been attempted. Here, we demonstrate a novel method of EUV generation by irradiating Sn with electrons emitted from a carbon nanotube (CNT)-based cold cathode electron beam (C-beam). Unlike a single laser source, electrons emitted from about 12,700 CNT emitters irradiated the Sn surface to generate EUV and control its intensity. EUV light generated by direct irradiation of electrons was verified using a photodiode equipped with a 150 nm thick Zr filter and patterning of polymethyl methacrylate (PMMA) photoresist. EUV generated with an input power of 6 W is sufficient to react the PMMA with exposure of 30 s. EUV intensity changes according to the anode voltage, current, and electron incident angle. The area reaching the Sn and penetration depth of electrons are easily adjusted. This method could be the cornerstone for advanced lithography for semiconductor fabrication and high-resolution photonics. Full article
(This article belongs to the Special Issue The Research Related to Nanomaterial Cold Cathode)
Show Figures

Figure 1

32 pages, 11972 KiB  
Review
Biological Applications of Short Wavelength Microscopy Based on Compact, Laser-Produced Gas-Puff Plasma Source
by Alfio Torrisi, Przemysław W. Wachulak, Andrzej Bartnik, Łukasz Węgrzyński, Tomasz Fok and Henryk Fiedorowicz
Appl. Sci. 2020, 10(23), 8338; https://doi.org/10.3390/app10238338 - 24 Nov 2020
Cited by 6 | Viewed by 3680
Abstract
Over the last decades, remarkable efforts have been made to improve the resolution in photon-based microscopes. The employment of compact sources based on table-top laser-produced soft X-ray (SXR) in the “water window” spectral range (λ = 2.3–4.4 nm) and extreme ultraviolet (EUV) plasma [...] Read more.
Over the last decades, remarkable efforts have been made to improve the resolution in photon-based microscopes. The employment of compact sources based on table-top laser-produced soft X-ray (SXR) in the “water window” spectral range (λ = 2.3–4.4 nm) and extreme ultraviolet (EUV) plasma allowed to overcome the limitations imposed by large facilities, such as synchrotrons and X-ray free electron lasers (XFEL), because of their high complexity, costs, and limited user access. A laser-plasma double stream gas-puff target source represents a powerful tool for microscopy operating in transmission mode, significantly improving the spatial resolution into the nanometric scale, comparing to the traditional visible light (optical) microscopes. Such an approach allows generating the plasma efficiently, without debris, providing a high flux of EUV and SXR photons. In this review, we present the development and optimization of desktop imaging systems: a EUV and an SXR full field microscope, allowing to achieve a sub-50 nm spatial resolution with short exposure time and an SXR contact microscope, capable to resolve internal structures in a thin layer of sensitive photoresist. Details about the source, as well as imaging results for biological applications, will be presented and discussed. Full article
(This article belongs to the Special Issue Recent Advances in Optical Bioimaging)
Show Figures

Figure 1

14 pages, 4034 KiB  
Article
Molecular Modeling of EUV Photoresist Revealing the Effect of Chain Conformation on Line-Edge Roughness Formation
by Juhae Park, Sung-Gyu Lee, Yannick Vesters, Joren Severi, Myungwoong Kim, Danilo De Simone, Hye-Keun Oh and Su-Mi Hur
Polymers 2019, 11(12), 1923; https://doi.org/10.3390/polym11121923 - 22 Nov 2019
Cited by 22 | Viewed by 14160
Abstract
Extreme ultraviolet lithography (EUVL) is a leading-edge technology for pattern miniaturization and the production of advanced electronic devices. One of the current critical challenges for further scaling down the technology is reducing the line-edge roughness (LER) of the final patterns while simultaneously maintaining [...] Read more.
Extreme ultraviolet lithography (EUVL) is a leading-edge technology for pattern miniaturization and the production of advanced electronic devices. One of the current critical challenges for further scaling down the technology is reducing the line-edge roughness (LER) of the final patterns while simultaneously maintaining high resolution and sensitivity. As the target sizes of features and LER become closer to the polymer size, polymer chain conformations and their distribution should be considered to understand the primary sources of LER. Here, we proposed a new approach of EUV photoresist modeling with an explicit description of polymer chains using a coarse-grained model. Our new simulation model demonstrated that interface variation represented by width and fluctuation at the edge of the pattern could be caused by characteristic changes of the resist material during the lithography processes. We determined the effect of polymer chain conformation on LER formation and how it finally contributed to LER formation with various resist material parameters (e.g., Flory–Huggins parameter, molecular weight, protected site ratio, and Tg). Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

13 pages, 2906 KiB  
Article
Bioimaging Using Full Field and Contact EUV and SXR Microscopes with Nanometer Spatial Resolution
by Przemysław Wachulak, Alfio Torrisi, Mesfin Ayele, Joanna Czwartos, Andrzej Bartnik, Łukasz Węgrzyński, Tomasz Fok, Tomáš Parkman, Šárka Salačová, Jana Turňová, Michal Odstrčil and Henryk Fiedorowicz
Appl. Sci. 2017, 7(6), 548; https://doi.org/10.3390/app7060548 - 26 May 2017
Cited by 18 | Viewed by 5913
Abstract
We present our recent results, related to nanoscale imaging in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges and demonstrate three novel imaging systems recently developed for the purpose of obtaining high spatial resolution images of nanoscale objects with the EUV [...] Read more.
We present our recent results, related to nanoscale imaging in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges and demonstrate three novel imaging systems recently developed for the purpose of obtaining high spatial resolution images of nanoscale objects with the EUV and SXR radiations. All the systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes—operating at 13.8 nm and 2.88 nm wavelengths, respectively—are currently capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The third system is a SXR contact microscope, operating in the “water-window” spectral range (2.3–4.4 nm wavelength), to produce an imprint of the internal structure of the investigated object in a thin surface layer of SXR light sensitive poly(methyl methacrylate) photoresist. The development of such compact imaging systems is essential to the new research related to biological science, material science, and nanotechnology applications in the near future. Applications of all the microscopes for studies of biological samples including carcinoma cells, diatoms, and neurons are presented. Details about the sources, the microscopes, as well as the imaging results for various objects will be shown and discussed. Full article
(This article belongs to the Special Issue Laser Processing for Bioengineering Applications)
Show Figures

Graphical abstract

Back to TopTop