Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = extraterrestrial construction materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4706 KiB  
Review
Review of In Situ Resource Utilization-Based Biocementation and Regolith Consolidation Techniques for Space Applications
by Zhen Yan and Satoru Kawasaki
Buildings 2025, 15(11), 1815; https://doi.org/10.3390/buildings15111815 - 25 May 2025
Viewed by 648
Abstract
With the advancement of space exploration, the development of sustainable construction technologies has become essential for the establishment of enduring extraterrestrial habitats. In Situ Resource Utilization (ISRU) assumes a pivotal role by facilitating the use of indigenous materials on celestial bodies such as [...] Read more.
With the advancement of space exploration, the development of sustainable construction technologies has become essential for the establishment of enduring extraterrestrial habitats. In Situ Resource Utilization (ISRU) assumes a pivotal role by facilitating the use of indigenous materials on celestial bodies such as the Moon and Mars, thereby reducing reliance on terrestrial resources. This review provides a comprehensive analysis of the latest ISRU-based construction technologies, with particular emphasis on biocementation techniques. It further examines the challenges associated with the application of biocementation in extreme space environments and outlines prospective research directions. The continued advancement of ISRU technologies through interdisciplinary collaboration remains crucial for the realization of viable and cost-efficient extraterrestrial construction solutions. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 2395 KiB  
Article
Lunar Regolith Improvement by Inducing Interparticle Adhesion with Capillary Forces
by Karol Brzeziński, Joanna Julia Sokołowska and Bartłomiej Przybyszewski
Materials 2025, 18(10), 2390; https://doi.org/10.3390/ma18102390 - 20 May 2025
Viewed by 1013
Abstract
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research [...] Read more.
This paper concerns the assessment of the lunar regolith ability to consolidate in the presence of liquid water and develop and sustain cohesion after drying. This type of cohesion originates from interparticle adhesion and can be potentially improved through grading modification. The research was conducted using the lunar regolith simulant (EAC-1A) reproducing the PSD of real lunar soil delivered from the Moon. LRS was subjected to water and elevated temperature (equal to the highest temperature on the Moon) to produce specimens of consolidated material, CCR (Capillary-Consolidated Regolith) and to test flexural strength. In order to adapt to potentially small stresses, tests were performed according to the modified EN 196-1 procedure intended for Portland cement testing: specimens scaled to 20 mm × 20 mm × 80 mm (new molds with Polytetrafluoroethylene/Teflon® coatings reducing adhesion were created), supports spacing in the three-point flexural test reduced to 50 mm and apparatus adjusted to precisely apply small loads. CCR developed flexural strength exceeding 0.025 MPa. Then, analogous tests were performed using LRS subjected to grinding in a disc mill prior to consolidation. It was shown that simple mechanical grinding enabled the improvement of interparticle adhesion with capillary forces, resulting in improved flexural strength of the consolidated material (0.123 MPa). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 7881 KiB  
Article
Quantitative Analysis of Meteorite Elements Based on the Multidimensional Scaling–Back Propagation Neural Network Algorithm Combined with Raman Mapping-Assisted Micro-Laser Induced Breakdown Spectroscopy
by Hongpeng Wang, Yingjian Xin, Peipei Fang, Yian Wang, Mingkang Duan, Wenming Wu, Ruidong Yang, Sicong Liu, Liang Zhang and Xiong Wan
Chemosensors 2023, 11(11), 567; https://doi.org/10.3390/chemosensors11110567 - 20 Nov 2023
Cited by 2 | Viewed by 3414
Abstract
Meteorites are an essential reference for human exploration of the universe and its cosmic evolution and an essential research object for searching for extraterrestrial life. Ways to quickly identify and screen suspected meteorite samples have become the foundation and prerequisite for research on [...] Read more.
Meteorites are an essential reference for human exploration of the universe and its cosmic evolution and an essential research object for searching for extraterrestrial life. Ways to quickly identify and screen suspected meteorite samples have become the foundation and prerequisite for research on high-value meteorite samples. Therefore, this paper proposes a Raman mapping-assisted micro-laser induced breakdown spectroscopy (micro-LIBS) technology for field detection of suspected meteorite material composition without sample pre-processing, with a high detection speed and cost-effectiveness, to realize the detection of element composition and molecular structure. Raman mapping carries out multispectral imaging with high spectral resolution of the region of interest. The fusion of Raman mapping and optical microscopy images can provide mineral categories and spatial distribution characteristics in regions of interest. A quantitative analysis model for Fe, Mg, and Na elements was constructed based on the multidimensional scaling–back propagation neural network (MDS-BPNN) algorithm. The determination coefficient of the model test set was better than 0.997, and the root mean square error was better than 0.65. The content of Fe, Mg, and Na elements in the meteorite was preliminarily evaluated, providing a reference for further analysis of element information in spectral image fusion data. The Raman–LIBS combined technology has significant application potential in rapidly evaluating suspected meteorite samples. Without high-end precision instruments or field research, this technology can provide scientists with significant reference value atomic and molecular spectral information. At the same time, this technology can be extended to other petrology research. We offer a fast, efficient, cost-effective, and reliable analysis scheme for reference. Full article
Show Figures

Figure 1

18 pages, 39417 KiB  
Article
Rheological Properties of Lunar Mortars
by Joanna J. Sokołowska, Piotr Woyciechowski and Maciej Kalinowski
Appl. Sci. 2021, 11(15), 6961; https://doi.org/10.3390/app11156961 - 28 Jul 2021
Cited by 13 | Viewed by 4300
Abstract
NASA has revealed that they plan to resume manned missions and ensure the permanent presence of people in the so-called habitats on the Moon by 2024. Moon habitats are expected to be built using local resources—it is planned to use lunar regolith as [...] Read more.
NASA has revealed that they plan to resume manned missions and ensure the permanent presence of people in the so-called habitats on the Moon by 2024. Moon habitats are expected to be built using local resources—it is planned to use lunar regolith as aggregate in lunar concrete. Lunar concrete design requires a new approach in terms of both the production technology and the operating conditions significantly different from the Earth. Considering that more and more often it is assumed that the water present on the Moon in the form of ice might be used to maintain the base, but also to construct the base structure, the authors decided to investigate slightly more traditional composites than the recently promoted sulfur and polymer composites thermally hardened and cured. Numerous compositions of cement “lunar micro-mortars” and “lunar mortars” were made and tested to study rheological properties, namely, the consistency, which largely depend on the morphology of the fine-grained filler, i.e., regolith. For obvious reasons, the lunar regolith simulant (LRS) was used in place of the original Moon regolith. The used LRS mapped the grain size distribution and morphology of the real lunar regolith. It was created for the purpose of studying the erosive effect of dusty regolith fractions on the moving parts of lunar landers and other mechanical equipment; therefore, it simulated well the behavior of regolith particles in relation to cement paste. The obtained results made it possible to develop preliminary compositions for “lunar mortars” (possible to apply in, e.g., 3D concrete printing) and to prepare, test, and evaluate mortar properties in comparison to traditional quartz mortars (under the conditions of the Earth laboratory). Full article
(This article belongs to the Special Issue Concrete and Mortar with Non-conventional Materials)
Show Figures

Figure 1

16 pages, 1410 KiB  
Perspective
The Multiplanetary Future of Plant Synthetic Biology
by Briardo Llorente, Thomas C. Williams and Hugh D. Goold
Genes 2018, 9(7), 348; https://doi.org/10.3390/genes9070348 - 10 Jul 2018
Cited by 40 | Viewed by 24061
Abstract
The interest in human space journeys to distant planets and moons has been re-ignited in recent times and there are ongoing plans for sending the first manned missions to Mars in the near future. In addition to generating oxygen, fixing carbon, and recycling [...] Read more.
The interest in human space journeys to distant planets and moons has been re-ignited in recent times and there are ongoing plans for sending the first manned missions to Mars in the near future. In addition to generating oxygen, fixing carbon, and recycling waste and water, plants could play a critical role in producing food and biomass feedstock for the microbial manufacture of materials, chemicals, and medicines in long-term interplanetary outposts. However, because life on Earth evolved under the conditions of the terrestrial biosphere, plants will not perform optimally in different planetary habitats. The construction or transportation of plant growth facilities and the availability of resources, such as sunlight and liquid water, may also be limiting factors, and would thus impose additional challenges to efficient farming in an extraterrestrial destination. Using the framework of the forthcoming human missions to Mars, here we discuss a series of bioengineering endeavors that will enable us to take full advantage of plants in the context of a Martian greenhouse. We also propose a roadmap for research on adapting life to Mars and outline our opinion that synthetic biology efforts towards this goal will contribute to solving some of the main agricultural and industrial challenges here on Earth. Full article
(This article belongs to the Special Issue Emerging Applications in Synthetic Biology)
Show Figures

Graphical abstract

Back to TopTop