Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = extracytoplasmic stress response

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3698 KB  
Article
RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1
by Yu Fan, Jing Bai, Daoyi Xi and Bin Yang
Microorganisms 2022, 10(5), 879; https://doi.org/10.3390/microorganisms10050879 - 22 Apr 2022
Cited by 11 | Viewed by 3369
Abstract
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival [...] Read more.
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival are poorly understood. As an extracytoplasmic function sigma factor, RpoE controls a wide range of pathogenesis-associated pathways in response to environmental stress. We found that the ΔrpoE mutant strain reduced the binding and invasion rate in human brain microvascular endothelial cells (HBMECs) in vitro, level of bacteremia, and percentage of meningitis in vivo. To confirm the direct targets of RpoE in vivo, we performed qRT-PCR and ChIP-qPCR on known toxic genes. RpoE was found to regulate pathogenic target genes, namely, ompA, cnf1, fimB, ibeA, kpsM, and kpsF directly and fimA, aslA, and traJ indirectly. The expression of these genes was upregulated when E. coli K1 was cultured with antibacterial peptides, whereas remained unchanged in the presence of the ΔrpoE mutant strain. Moreover, RpoE reduced IL-6 and IL-8 levels in E. coli K1-infected HBMECs. Altogether, these findings demonstrate that RpoE mediates the host adaptation capacity of E. coli K1 via a regulatory mechanism on virulence factors. Full article
(This article belongs to the Special Issue Adaptation Mechanisms of Microbial Pathogens to Their Host Niche)
Show Figures

Figure 1

39 pages, 3784 KB  
Article
The Periplasmic Oxidoreductase DsbA Is Required for Virulence of the Phytopathogen Dickeya solani
by Tomasz Przepiora, Donata Figaj, Aleksandra Bogucka, Jakub Fikowicz-Krosko, Robert Czajkowski, Nicole Hugouvieux-Cotte-Pattat and Joanna Skorko-Glonek
Int. J. Mol. Sci. 2022, 23(2), 697; https://doi.org/10.3390/ijms23020697 - 9 Jan 2022
Cited by 10 | Viewed by 3397
Abstract
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding [...] Read more.
In bacteria, the DsbA oxidoreductase is a crucial factor responsible for the introduction of disulfide bonds to extracytoplasmic proteins, which include important virulence factors. A lack of proper disulfide bonds frequently leads to instability and/or loss of protein function; therefore, improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae family which is responsible for very high economic losses mainly in potato. In this work, we constructed a D. solani dsbA mutant and demonstrated that a lack of DsbA caused a loss of virulence. The mutant bacteria showed lower activities of secreted virulence determinants and were unable to develop disease symptoms in a potato plant. The SWATH-MS-based proteomic analysis revealed that the dsbA mutation led to multifaceted effects in the D. solani cells, including not only lower levels of secreted virulence factors, but also the induction of stress responses. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is crucial for D. solani virulence, and a lack of DsbA significantly disturbs cellular physiology. Full article
(This article belongs to the Collection Microbial Virulence Factors)
Show Figures

Figure 1

27 pages, 3534 KB  
Review
Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases
by Eiji Ishii and Yoko Eguchi
Biomolecules 2021, 11(10), 1524; https://doi.org/10.3390/biom11101524 - 15 Oct 2021
Cited by 47 | Viewed by 8733
Abstract
Two-component signal transduction systems (TCSs) are widely conserved in bacteria to respond to and adapt to the changing environment. Since TCSs are also involved in controlling the expression of virulence, biofilm formation, quorum sensing, and antimicrobial resistance in pathogens, they serve as candidates [...] Read more.
Two-component signal transduction systems (TCSs) are widely conserved in bacteria to respond to and adapt to the changing environment. Since TCSs are also involved in controlling the expression of virulence, biofilm formation, quorum sensing, and antimicrobial resistance in pathogens, they serve as candidates for novel drug targets. TCSs consist of a sensor histidine kinase (HK) and its cognate response regulator (RR). Upon perception of a signal, HKs autophosphorylate their conserved histidine residues, followed by phosphotransfer to their partner RRs. The phosphorylated RRs mostly function as transcriptional regulators and control the expression of genes necessary for stress response. HKs sense their specific signals not only in their extracytoplasmic sensor domain but also in their cytoplasmic and transmembrane domains. The signals are sensed either directly or indirectly via cofactors and accessory proteins. Accumulating evidence shows that a single HK can sense and respond to multiple signals in different domains. The underlying molecular mechanisms of how HK activity is controlled by these signals have been extensively studied both biochemically and structurally. In this article, we introduce the wide diversity of signal perception in different domains of HKs, together with their recently clarified structures and molecular mechanisms. Full article
(This article belongs to the Collection Recent Advances in Protein Phosphorylation)
Show Figures

Figure 1

25 pages, 6635 KB  
Article
Environmental Conditions Modulate the Transcriptomic Response of Both Caulobacter crescentus Morphotypes to Cu Stress
by Laurens Maertens, Pauline Cherry, Françoise Tilquin, Rob Van Houdt and Jean-Yves Matroule
Microorganisms 2021, 9(6), 1116; https://doi.org/10.3390/microorganisms9061116 - 21 May 2021
Cited by 11 | Viewed by 3917
Abstract
Bacteria encounter elevated copper (Cu) concentrations in multiple environments, varying from mining wastes to antimicrobial applications of copper. As the role of the environment in the bacterial response to Cu ion exposure remains elusive, we used a tagRNA-seq approach to elucidate the disparate [...] Read more.
Bacteria encounter elevated copper (Cu) concentrations in multiple environments, varying from mining wastes to antimicrobial applications of copper. As the role of the environment in the bacterial response to Cu ion exposure remains elusive, we used a tagRNA-seq approach to elucidate the disparate responses of two morphotypes of Caulobacter crescentus NA1000 to moderate Cu stress in a complex rich (PYE) medium and a defined poor (M2G) medium. The transcriptome was more responsive in M2G, where we observed an extensive oxidative stress response and reconfiguration of the proteome, as well as the induction of metal resistance clusters. In PYE, little evidence was found for an oxidative stress response, but several transport systems were differentially expressed, and an increased need for histidine was apparent. These results show that the Cu stress response is strongly dependent on the cellular environment. In addition, induction of the extracytoplasmic function sigma factor SigF and its regulon was shared by the Cu stress responses in both media, and its central role was confirmed by the phenotypic screening of a sigF::Tn5 mutant. In both media, stalked cells were more responsive to Cu stress than swarmer cells, and a stronger basal expression of several cell protection systems was noted, indicating that the swarmer cell is inherently more Cu resistant. Our approach also allowed for detecting several new transcription start sites, putatively indicating small regulatory RNAs, and additional levels of Cu-responsive regulation. Full article
Show Figures

Figure 1

27 pages, 19185 KB  
Review
Extracytoplasmic Function σ Factors as Tools for Coordinating Stress Responses
by Rubén de Dios, Eduardo Santero and Francisca Reyes-Ramírez
Int. J. Mol. Sci. 2021, 22(8), 3900; https://doi.org/10.3390/ijms22083900 - 9 Apr 2021
Cited by 14 | Viewed by 4376
Abstract
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most [...] Read more.
The ability of bacterial core RNA polymerase (RNAP) to interact with different σ factors, thereby forming a variety of holoenzymes with different specificities, represents a powerful tool to coordinately reprogram gene expression. Extracytoplasmic function σ factors (ECFs), which are the largest and most diverse family of alternative σ factors, frequently participate in stress responses. The classification of ECFs in 157 different groups according to their phylogenetic relationships and genomic context has revealed their diversity. Here, we have clustered 55 ECF groups with experimentally studied representatives into two broad classes of stress responses. The remaining 102 groups still lack any mechanistic or functional insight, representing a myriad of systems yet to explore. In this work, we review the main features of ECFs and discuss the different mechanisms controlling their production and activity, and how they lead to a functional stress response. Finally, we focus in more detail on two well-characterized ECFs, for which the mechanisms to detect and respond to stress are complex and completely different: Escherichia coli RpoE, which is the best characterized ECF and whose structural and functional studies have provided key insights into the transcription initiation by ECF-RNAP holoenzymes, and the ECF15-type EcfG, the master regulator of the general stress response in Alphaproteobacteria. Full article
(This article belongs to the Special Issue Bacterial Proteins in Stress Management)
Show Figures

Figure 1

25 pages, 4289 KB  
Article
Tackling Pseudomonas aeruginosa Virulence by Mulinane-Like Diterpenoids from Azorella atacamensis
by Onyedikachi Cecil Azuama, Sergio Ortiz, Luis Quirós-Guerrero, Emeline Bouffartigues, Damien Tortuel, Olivier Maillot, Marc Feuilloley, Pierre Cornelis, Olivier Lesouhaitier, Raphaël Grougnet, Sabrina Boutefnouchet, Jean-Luc Wolfender, Sylvie Chevalier and Ali Tahrioui
Biomolecules 2020, 10(12), 1626; https://doi.org/10.3390/biom10121626 - 2 Dec 2020
Cited by 19 | Viewed by 4416
Abstract
Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which [...] Read more.
Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence. Full article
(This article belongs to the Collection Pharmacology of Medicinal Plants)
Show Figures

Figure 1

20 pages, 3375 KB  
Article
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant
by Damien Tortuel, Ali Tahrioui, Sophie Rodrigues, Mélyssa Cambronel, Amine M. Boukerb, Olivier Maillot, Julien Verdon, Emile Bere, Michael Nusser, Gerald Brenner-Weiss, Audrey David, Onyedikachi Cecil Azuama, Marc G. J. Feuilloley, Nicole Orange, Olivier Lesouhaitier, Pierre Cornelis, Sylvie Chevalier and Emeline Bouffartigues
Microorganisms 2020, 8(11), 1700; https://doi.org/10.3390/microorganisms8111700 - 30 Oct 2020
Cited by 15 | Viewed by 4786
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the [...] Read more.
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism. Full article
Show Figures

Graphical abstract

19 pages, 4292 KB  
Article
Role of CpxR in Biofilm Development: Expression of Key Fimbrial, O-Antigen and Virulence Operons of Salmonella Enteritidis
by Deeksha Shetty, Juan E. Abrahante, Samuel M. Chekabab, Xuxiaochen Wu, Darren R. Korber and Sinisa Vidovic
Int. J. Mol. Sci. 2019, 20(20), 5146; https://doi.org/10.3390/ijms20205146 - 17 Oct 2019
Cited by 21 | Viewed by 6081
Abstract
Salmonella Enteritidis is a non-typhoidal serovar of great public health significance worldwide. The RpoE sigma factor and CpxRA two-component system are the major regulators of the extracytoplasmic stress response. In this study, we found that the CpxR has highly significant, but opposite effects [...] Read more.
Salmonella Enteritidis is a non-typhoidal serovar of great public health significance worldwide. The RpoE sigma factor and CpxRA two-component system are the major regulators of the extracytoplasmic stress response. In this study, we found that the CpxR has highly significant, but opposite effects on the auto-aggregation and swarming motility of S. Enteritidis. Auto-aggregation was negatively affected in the ∆cpxR mutant, whereas the same mutant significantly out-performed its wild-type counterpart with respect to swarming motility, indicating that the CpxR plays a role in biofilm-associated phenotypes. Indeed, biofilm-related assays showed that the CpxR is of critical importance in biofilm development under both static (microtiter plate) and dynamic (flow cell) media flow conditions. In contrast, the RpoE sigma factor showed no significant role in biofilm development under dynamic conditions. Transcriptomic analysis revealed that the cpxR mutation negatively affected the constitutive expression of the operons critical for biosynthesis of O-antigen and adherence, but positively affected the expression of virulence genes critical for Salmonella-mediated endocytosis. Conversely, CpxR induced the expression of curli csgAB and fimbrial stdAC operons only during biofilm development and flagellar motAB and fliL operons exclusively during the planktonic phase, indicating a responsive biofilm-associated loop of the CpxR regulator. Full article
(This article belongs to the Special Issue Biofilms and Bacterial Virulence)
Show Figures

Figure 1

Back to TopTop