Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = extractive dividing wall column

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5645 KiB  
Review
Dehydration of Isopropanol: A Comparative Review of Distillation Processes, Heat Integration, and Intensification Techniques
by Le Cao Nhien, Neha Agarwal and Moonyong Lee
Energies 2023, 16(16), 5934; https://doi.org/10.3390/en16165934 - 11 Aug 2023
Cited by 7 | Viewed by 7998
Abstract
The dehydration of isopropanol (IPA) is a crucial process in numerous industries, and the optimization of its efficiency and economic viability is essential. This review provides a comprehensive analysis and comparison of various distillation processes, heat integration (HI) strategies, and process intensification (PI) [...] Read more.
The dehydration of isopropanol (IPA) is a crucial process in numerous industries, and the optimization of its efficiency and economic viability is essential. This review provides a comprehensive analysis and comparison of various distillation processes, heat integration (HI) strategies, and process intensification (PI) techniques employed for IPA dehydration. The advantages, limitations, and applicability of distillation processes, such as extractive distillation, heterogeneous azeotropic distillation, and pressure swing distillation, are discussed. In addition, this review explores the potential of HI techniques to optimize energy consumption and reduce operating costs of IPA dehydration processes. PI techniques, including thermally coupled arrangements and dividing wall columns, are examined for their ability to improve the process efficiency and sustainability. It is crucial to conduct thorough evaluations, as well as energy and economic analyses, when choosing the appropriate distillation process, HI approach, and PI technique for specific IPA dehydration applications. This review emphasizes the potential for improving the energy efficiency, product purity, and cost-effectiveness of IPA dehydration through the integration of advanced distillation processes and PI techniques. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 5845 KiB  
Article
Benzene Reduction Process Simulation and Optimization in Catalytic Cracking Gasoline Distillation
by Zijian Wang, Ming Ke, Zhaozheng Song, Jiahan Li and Jinru Sun
Processes 2023, 11(1), 151; https://doi.org/10.3390/pr11010151 - 4 Jan 2023
Cited by 3 | Viewed by 3544
Abstract
For countries where catalytic cracking gasoline is the primary source, the proposed technology consists in separating a benzene-rich fraction from catalytic cracking gasoline in order to be processed further together with reforming gasoline in a unit dedicated to aromatics extraction. In this way, [...] Read more.
For countries where catalytic cracking gasoline is the primary source, the proposed technology consists in separating a benzene-rich fraction from catalytic cracking gasoline in order to be processed further together with reforming gasoline in a unit dedicated to aromatics extraction. In this way, two benefits are obtained: a benzene-rich fraction as raw material for extraction and the leftover fraction that satisfies the benzene content standards as a qualified product. It is established to use the divided wall distillation model, single-column distillation model, and double-column distillation model. Sensitivity analysis and SQP optimization are used to identify the ideal operating conditions and gasoline yield. Economic research shows that the divided wall and single-column distillation models have more potential for growth. It offers theoretical direction for businesses to design and optimize the pertinent process. Full article
Show Figures

Figure 1

12 pages, 2496 KiB  
Article
Simulation and Optimization of the Separation of Methanol-Dimethyl Carbonate Azeotrope by Extractive Dividing Wall Column
by Meiqin Zheng and Jiawei Wang
Separations 2022, 9(8), 189; https://doi.org/10.3390/separations9080189 - 25 Jul 2022
Cited by 3 | Viewed by 4039
Abstract
The extractive distillation of a methanol and dimethyl carbonate (DMC) azeotrope system was taken as an example, and the simulation and optimization of the conventional extractive process (CEP) and extractive dividing wall column (EDWC) were carried out by Aspen Plus software. In order [...] Read more.
The extractive distillation of a methanol and dimethyl carbonate (DMC) azeotrope system was taken as an example, and the simulation and optimization of the conventional extractive process (CEP) and extractive dividing wall column (EDWC) were carried out by Aspen Plus software. In order to meet the requirements of separation, lower energy consumption and investment cost were obtained by using a univariate analysis of the optimal operating parameters of the EDWC. The coupling mechanism of the EDWC was described. The results showed that the number of theoretical plates of EDWC was 36, which was lower than the sum of theoretical plates in the two columns of CEP. At the same time, compared with the CEP, the energy consumption of the EDWC could save up to 16.09% and 11.85%, respectively. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Figure 1

14 pages, 5262 KiB  
Article
Design and Control of Extractive Dividing Wall Column for Separating Dipropyl Ether/1-Propyl Alcohol Mixture
by Qiliang Ye, Yule Wang, Hui Pan, Wenyong Zhou and Peiqing Yuan
Processes 2022, 10(4), 665; https://doi.org/10.3390/pr10040665 - 29 Mar 2022
Cited by 11 | Viewed by 3923
Abstract
The focus of this work is the study of the extractive dividing wall column (EDWC) for separating the azeotropic mixture of dipropyl ether and 1-propyl alcohol with N, N-dimethylacetamide (DMAC) as the entrainer. Three separation sequences are investigated, including a conventional extractive distillation [...] Read more.
The focus of this work is the study of the extractive dividing wall column (EDWC) for separating the azeotropic mixture of dipropyl ether and 1-propyl alcohol with N, N-dimethylacetamide (DMAC) as the entrainer. Three separation sequences are investigated, including a conventional extractive distillation sequence (CEDS), EDWC and a pressure swing distillation sequence (PSDS). The static simulation results showed that the EDWC with DMAC as the entrainer is more economically attractive than CEDS and PSDS. Subsequently, a control structure CS1 based on a three-temperature control loop and a control structure CS2 with the vapor split ratio as the manipulated variable are investigated for the EDWC. Their dynamic control performances are evaluated by facing large feed flow rates and composition disturbances. The results showed that the CS1 can deal with feed flow rate disturbance effectively. However, the transient deviation is large and the settling time is too long when facing feed flow composition disturbances. The CS2 can quickly and effectively deal with feed flow rate and composition disturbances, and it can maintain the two products at high purity. Full article
(This article belongs to the Topic Chemical and Biochemical Processes for Energy Sources)
Show Figures

Figure 1

19 pages, 3212 KiB  
Article
Robust Initialization of Rigorous Process Simulations of Multiple Dividing Wall Columns via Vmin Diagrams
by Lena-Marie Ränger, Ulrich Preißinger and Thomas Grützner
ChemEngineering 2018, 2(2), 25; https://doi.org/10.3390/chemengineering2020025 - 4 Jun 2018
Cited by 16 | Viewed by 5146 | Correction
Abstract
Dividing Wall Columns (DWCs) allow the separation of a ternary mixture in one column shell by applying a vertical partition wall, yielding a reduction of operational and capital costs of up to 30%. Multiple DWC (mDWC), the consequent advancement of standard DWC, makes [...] Read more.
Dividing Wall Columns (DWCs) allow the separation of a ternary mixture in one column shell by applying a vertical partition wall, yielding a reduction of operational and capital costs of up to 30%. Multiple DWC (mDWC), the consequent advancement of standard DWC, makes use of more than one partitioning wall, allowing the separation of quaternary or even higher mixtures in one column shell accompanied by a further reduction of energy consumption. Since no dedicated models for these columns are available in commercial process simulators, thermodynamic consistent flowsheets have to be designed and implemented. The thermally fully coupled Petlyuk arrangement is one important example. However, the initial convergence of these substituting flowsheets is demanding, since a large number of meaningful initial guesses have to be provided. A promising method for generating these first estimates are minimum vapor (Vmin) diagrams. All internal flows can be extracted from these diagrams and used for robust initialization of the simulation. The goal of this work is to present the Vmin method in a comprehensive way in order to initialize mDWC simulations to predict the separation of four component mixtures. Additionally, the adaptation of the diagram to configurations different than Petlyuk arrangements for mDWC is evaluated and a systematic procedure to obtain them is presented. In the end, an example of a converging simulation is given, which was obtained with the values from the Vmin diagram. Full article
Show Figures

Figure 1

Back to TopTop