Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = expanded granular sludge bed reactor (EGSB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7641 KiB  
Article
Rapid Start-Up Characteristics of Anammox under Different Inoculation Conditions
by Qiong Tan, Suhui Xia, Wenlai Xu and Yue Jian
Int. J. Environ. Res. Public Health 2023, 20(4), 2979; https://doi.org/10.3390/ijerph20042979 - 8 Feb 2023
Cited by 5 | Viewed by 2228
Abstract
The long multiplication time and extremely demanding enrichment environment requirements of Anammox bacteria (AAOB) have led to difficult reactor start-ups and hindered its practical dissemination. Few feasibility studies have been reported on the recovery of AAOB activity initiation after inlet substrate disconnection caused [...] Read more.
The long multiplication time and extremely demanding enrichment environment requirements of Anammox bacteria (AAOB) have led to difficult reactor start-ups and hindered its practical dissemination. Few feasibility studies have been reported on the recovery of AAOB activity initiation after inlet substrate disconnection caused by an unfavorable condition, and few factors, such as indicators of the recovery process, have been explored. Therefore, in this experiment, two modified expanded granular sludge bed reactors (EGSB) were inoculated with 1.5 L anaerobic granular sludge (AGS) + 1 L Anammox sludge (AMS) (R1) and 2.5 L anaerobic granular sludge (AGS) (R2), respectively. After a long-term (140 days) starvation shock at a high temperature (38 °C), the bacteria population activity recovery experiments were conducted. After 160 days, both reactors were successfully started up, and the total nitrogen removal rates exceeded 87%. Due to the experimental period, the total nitrogen removal rate of R2 was slightly higher than that of R1 in the final stage. However, it is undeniable that R2 had a relatively long activity delay during startup, while R1 had no significant activity delay during startup. The sludge obtained from R1 had a higher specific anammox activity (SAA). Analysis of the extracellular polymer substances (EPS) results showed that the extracellular polymer content in R1 was higher than that in R2 throughout the recovery process, indicating that R1 had higher sludge stability and denitrification performance. Scanning electron microscopy (SEM) analysis showed that more extracellular filamentous bacteria could be seen in the R1 reactor with better morphology of Anammox bacteria. In contrast, the R2 reactor had fewer extracellular hyphae and micropores as a percentage and higher filamentous bacteria content. The results of microbial 16SrDNA analysis showed that R1 used AAOB as inoculum to initiate Anammox, and the reactor was enriched with Anammox bacteria earlier and in much greater abundance than R2. The experimental results indicated that inoculating mixed anaerobic granular sludge and Anammox sludge to initiate an anammox reactor was more effective. Full article
(This article belongs to the Special Issue Trends in Wastewater Treatment)
Show Figures

Figure 1

17 pages, 1415 KiB  
Article
Anaerobic Digestion of Pig Slurry in Fixed-Bed and Expanded Granular Sludge Bed Reactors
by Jurek Häner, Tobias Weide, Alexander Naßmacher, Roberto Eloy Hernández Regalado, Christof Wetter and Elmar Brügging
Energies 2022, 15(12), 4414; https://doi.org/10.3390/en15124414 - 17 Jun 2022
Cited by 5 | Viewed by 3340
Abstract
Anaerobic digestion of animal manure is a potential bioenergy resource that avoids greenhouse gas emissions. However, the conventional approach is to use continuously stirred tank reactors (CSTRs) with hydraulic retention times (HRTs) of greater than 30 d. Reactors with biomass retention were investigated [...] Read more.
Anaerobic digestion of animal manure is a potential bioenergy resource that avoids greenhouse gas emissions. However, the conventional approach is to use continuously stirred tank reactors (CSTRs) with hydraulic retention times (HRTs) of greater than 30 d. Reactors with biomass retention were investigated in this study in order to increase the efficiency of the digestion process. Filtered pig slurry was used as a substrate in an expanded granular sludge bed (EGSB) reactor and fixed-bed (FB) reactor. The highest degradation efficiency (ηCOD) and methane yield (MY) relative to the chemical oxygen demand (COD) were observed at the minimum loading rates, with MY = 262 L/kgCOD and ηCOD = 73% for the FB reactor and MY = 292 L/kgCOD and ηCOD = 76% for the EGSB reactor. The highest daily methane production rate (MPR) was observed at the maximum loading rate, with MPR = 3.00 m3/m3/d at HRT = 2 d for the FB reactor and MPR = 2.16 m3/m3/d at HRT = 3 d for the EGSB reactor. For both reactors, a reduction in HRT was possible compared to conventionally driven CSTRs, with the EGSB reactor offering a higher methane yield and production rate at a shorter HRT. Full article
Show Figures

Figure 1

20 pages, 2348 KiB  
Article
Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector
by Roberto Eloy Hernández Regalado, Jurek Häner, Elmar Brügging and Jens Tränckner
Energies 2022, 15(12), 4413; https://doi.org/10.3390/en15124413 - 17 Jun 2022
Cited by 6 | Viewed by 2588
Abstract
The urgent need to meet climate goals provides unique opportunities to promote small-scale farm anaerobic digesters that valorize on-site wastes for producing renewable electricity and heat, thereby cushioning agribusinesses against energy perturbations. This study explored the economic viability of mono-digestion of cow manure [...] Read more.
The urgent need to meet climate goals provides unique opportunities to promote small-scale farm anaerobic digesters that valorize on-site wastes for producing renewable electricity and heat, thereby cushioning agribusinesses against energy perturbations. This study explored the economic viability of mono-digestion of cow manure (CWM) and piglet manure (PM) in small manured-based 99 kWel plants using three treatment schemes (TS): (1) typical agricultural biogas plant, (2) a single-stage expanded granular sludge bed (EGSB) reactor, and (3) a multistage EGSB with a continuous stirred tank reactor. The economic evaluation attempted to take advantage of the financial incentives provided by The Renewable Energy Sources Act in Germany. To evaluate these systems, batch tests on raw and solid substrate fractions were conducted. For the liquid fraction, data of continuous tests obtained in a laboratory was employed. The economical evaluation was based on the dynamic indicators of net present value and internal return rate (IRR). Sensitivity analyses of the electricity and heat selling prices and hydraulic retention time were also performed. Furthermore, an incremental analysis of IRR was conducted to determine the most profitable alternative. The most influential variable was electricity selling price, and the most profitable alternatives were TS1 (CWM) > TS1 (PM) > TS3 (CWM). However, further studies on co-digestion using TS3 are recommended because this scheme potentially provides the greatest technical flexibility and highest environmental sustainability. Full article
Show Figures

Figure 1

14 pages, 2275 KiB  
Article
Application of the EGSB-CMBR Process to High-Concentration Organic Wastewater Treatment
by Xuli Zhang, Dunqiu Wang and Yue Jin
Processes 2022, 10(5), 1039; https://doi.org/10.3390/pr10051039 - 23 May 2022
Cited by 2 | Viewed by 6216
Abstract
To decrease the cost of wastewater treatment at the plant, the Wuzhou Shenguan Protein Enteric Coating Production Plant designed and built an expanded granular sludge bed (EGSB)-ceramic membrane bioreactor reactor (CMBR) process for treating high-concentration organic wastewater with a capacity of 25 m [...] Read more.
To decrease the cost of wastewater treatment at the plant, the Wuzhou Shenguan Protein Enteric Coating Production Plant designed and built an expanded granular sludge bed (EGSB)-ceramic membrane bioreactor reactor (CMBR) process for treating high-concentration organic wastewater with a capacity of 25 m3/d. The EGSB is divided into anaerobic and microaerobic sections. The purpose of the anaerobic section is to substantially degrade COD, and the main functions of the microaerobic section are to coordinate the relationship between hydrolytic acid-producing bacteria, methanogenic bacteria (MBP), and sulfate-reducing bacteria (SRB) and to mitigate the inhibitory effects between them to simultaneously remove COD and sulfate. Anaerobic ammonia-oxidizing bacteria were added to the CMBR reactor to remove both COD and ammonia nitrogen. The results of the operation showed that more than 99% of the COD was removed by the EGSB-CMBR process, while the removal rates of NH4+-N and SS were greater than 70% and 90%, respectively. In addition, the effluent met the requirements of the secondary standard of the Comprehensive Wastewater Discharge Standard (8978-1996). Economic and technical analyses showed that the modified EGSB-CMBR reactor has a high treatment efficiency, which greatly saves on the cost of the “commissioned treatment” of high-concentration organic waste liquid in the plant. Specifically, it can save more than 800,000 CNY for the plant annually. Full article
Show Figures

Graphical abstract

22 pages, 5766 KiB  
Article
Continuous Co-Digestion of Agro-Industrial Mixtures in Laboratory Scale Expanded Granular Sludge Bed Reactors
by Roberto Eloy Hernández Regalado, Jurek Häner, Daniel Baumkötter, Lukas Wettwer, Elmar Brügging and Jens Tränckner
Appl. Sci. 2022, 12(5), 2295; https://doi.org/10.3390/app12052295 - 22 Feb 2022
Cited by 5 | Viewed by 2567
Abstract
Anaerobic co-digestion often improves the yields and stability of single anaerobic digestion. However, finding the right substrate proportions within mixtures and corresponding optimal operating conditions using a particular reactor technology often presents a challenge. This research investigated the anaerobic digestion of three mixtures [...] Read more.
Anaerobic co-digestion often improves the yields and stability of single anaerobic digestion. However, finding the right substrate proportions within mixtures and corresponding optimal operating conditions using a particular reactor technology often presents a challenge. This research investigated the anaerobic digestion of three mixtures from the liquid fractions of piglet manure (PM), cow manure (CWM), starch wastewater (SWW), and sugar beet (SBT) using three 30 L expanded granular sludge bed (EGSB) reactors. The synergistic effects of two three-substrate mixtures (i.e., PM+CWM+SWW and PM+CWM+SBT) were studied using the PM+CWM mixture as a benchmark. These were used to detect the predicted synergistic interactions found in previous batch tests. The methane productivity of both three-substrate mixtures (~1.20 LCH4/Lreact/d) was 2× the productivity of the benchmark mixture (0.64 LCH4/Lreact/d). Furthermore, strong indications of the predicted synergistic effects were found in the three-substrate mixtures, which were also stable due to their appropriate carbon-to-nitrogen ratio values. Moreover, the lowest averaged solid to hydraulic retention times ratio calculated for samples obtained from the top of the reactors was > 1. This confirmed the superior biomass retention capacity of the studied EGSB reactors over typical reactors that have been used in agricultural biogas plants with a continuous stirred tank reactor. Full article
(This article belongs to the Special Issue Treatment of Wastes and Energy Recovery)
Show Figures

Graphical abstract

18 pages, 10979 KiB  
Article
Poultry Slaughterhouse Wastewater Remediation Using a Bio-Delipidation Pre-Treatment Unit Coupled with an Expanded Granular Sludge Bed Reactor
by Cebisa Thabo Mdladla, Phumeza Akhona Dyosile, Mahomet Njoya, Moses Basitere, Seteno Karabo Obed Ntwampe and Ephraim Kaskote
Processes 2021, 9(11), 1938; https://doi.org/10.3390/pr9111938 - 29 Oct 2021
Cited by 5 | Viewed by 2601
Abstract
The treatment of poultry slaughterhouse wastewater (PSW) with an Expanded Granular Sludge-Bed Bioreactor (EGSB) is hindered by the washout of activated sludge, and difficulties associated with the operation of the three-phase separator and the determination of the optimum up-flow velocity for sludge-bed fluidization. [...] Read more.
The treatment of poultry slaughterhouse wastewater (PSW) with an Expanded Granular Sludge-Bed Bioreactor (EGSB) is hindered by the washout of activated sludge, and difficulties associated with the operation of the three-phase separator and the determination of the optimum up-flow velocity for sludge-bed fluidization. This results in a poor reactor functionality, and thus a poor performance due to pollutants such as fats, oil and grease (FOG) in the PSW being treated. Hydrolyzing the FOG content with a bio-delipidation, enzyme-based agent in a pre-treatment unit would significantly improve the effectiveness of the primary PSW treating system, i.e., the EGSB. In this study, PSW was pre-treated for 48 h with a biological mixture containing bioflocculants and bio-delipidation constituents. The pre-treated PSW was further treated in an EGSB. The PSW FOG, total chemical oxygen demand (tCOD) and total suspended solids (TSS) content were determined to assess the effectiveness of the pre-treatment process as well as to observe the remedial action of the combined pre-treatment-EGSB system. An increased treatment efficacy was noted for the combined PSW treatment system, whereby the tCOD, FOG and TSS removal averaged 76%, 88% and 87%, respectively. The process developed is intended for micro, small and medium poultry slaughterhouses. Full article
(This article belongs to the Special Issue Applied Enzymology & Environmental Biotechnology)
Show Figures

Figure 1

20 pages, 2852 KiB  
Review
Multi-Integrated Systems for Treatment of Abattoir Wastewater: A Review
by Larryngeai Gutu, Moses Basitere, Theo Harding, David Ikumi, Mahomet Njoya and Chris Gaszynski
Water 2021, 13(18), 2462; https://doi.org/10.3390/w13182462 - 7 Sep 2021
Cited by 29 | Viewed by 5964
Abstract
Biological wastewater treatment processes such as activated sludge and anaerobic digestion remain the most favorable when compared to processes such as chemical precipitation and ion exchange due to their cost-effectiveness, eco-friendliness, ease of operation, and low maintenance. Since Abattoir Wastewater (AWW) is characterized [...] Read more.
Biological wastewater treatment processes such as activated sludge and anaerobic digestion remain the most favorable when compared to processes such as chemical precipitation and ion exchange due to their cost-effectiveness, eco-friendliness, ease of operation, and low maintenance. Since Abattoir Wastewater (AWW) is characterized as having high organic content, anaerobic digestion is slow and inadequate for complete removal of all nutrients and organic matter when required to produce a high-quality effluent that satisfies discharge standards. Multi-integrated systems can be designed in which additional stages are added before the anaerobic digester (pre-treatment), as well as after the digester (post-treatment) for nutrient recovery and pathogen removal. This can aid the water treatment plant effluent to meet the discharge regulations imposed by the legislator and allow the possibility for reuse on-site. This review aims to provide information on the principles of anaerobic digestion, aeration pre-treatment technology using enzymes and a hybrid membrane bioreactor, describing their various roles in AWW treatment. Simultaneous nitrification and denitrification are essential to add after anaerobic digestion for nutrient recovery utilizing a single step process. Nutrient recovery has become more favorable than nutrient removal in wastewater treatment because it consumes less energy, making the process cost-effective. In addition, recovered nutrients can be used to make nutrient-based fertilizers, reducing the effects of eutrophication and land degradation. The downflow expanded granular bed reactor is also compared to other high-rate anaerobic reactors, such as the up-flow anaerobic sludge blanket (UASB) and the expanded granular sludge bed reactor (EGSB). Full article
(This article belongs to the Special Issue Wastewater Treatment: Current and Future Techniques)
Show Figures

Figure 1

22 pages, 14458 KiB  
Article
Assessment of an Integrated and Sustainable Multistage System for the Treatment of Poultry Slaughterhouse Wastewater
by Phumeza Akhona Dyosile, Cebisa Mdladla, Mahomet Njoya, Moses Basitere, Seteno Karabo Obed Ntwampe and Ephraim Kaskote
Membranes 2021, 11(8), 582; https://doi.org/10.3390/membranes11080582 - 30 Jul 2021
Cited by 10 | Viewed by 3476
Abstract
This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed [...] Read more.
This paper assesses the performance of an integrated multistage laboratory-scale plant, for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane bioreactor (DEGBR-MBR). The system’s configuration strategy was developed to achieve optimal PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW) in order to treat FOG including odour causing constituents such as H2S known to sour anaerobic digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment. This was conducted to aid the reduction in clogging and sludge washout in the DEGBR-MBR systems and to achieve the optimum reactor and membrane system performance. A performance for the treatment of PSW after lipid reduction was conducted through a qualitative analysis by assessing the pre- and post-pre-treatment units’ chemical oxygen demand (COD), total suspended solids (TSS), and FOG concentrations across all other units and, in particular, the membrane units. Furthermore, a similar set-up and operating conditions in a comparative study was also performed. The pre-treatment unit’s biodelipidation abilities were characterised by a mean FOG removal of 80% and the TSS and COD removal reached 38 and 56%, respectively. The final acquired removal results on the DEGBR, at an OLR of ~18–45 g COD/L.d, was 87, 93, and 90% for COD, TSS, and FOG, respectively. The total removal efficiency across the pre-treatment-DEGBR-MBR units was 99% for COD, TSS, and FOG. Even at a high OLR, the pre-treatment-DEGBR-MBR train seemed a robust treatment strategy and achieved the effluent quality set requirements for effluent discharge in most countries. Full article
(This article belongs to the Special Issue Advanced Membrane Bioreactors for Wastewater Treatment)
Show Figures

Graphical abstract

16 pages, 8188 KiB  
Article
Treatment of Poultry Slaughterhouse Wastewater (PSW) Using a Pretreatment Stage, an Expanded Granular Sludge Bed Reactor (EGSB), and a Membrane Bioreactor (MBR)
by Honeil Basile Meyo, Mahomet Njoya, Moses Basitere, Seteno Karabo Obed Ntwampe and Ephraim Kaskote
Membranes 2021, 11(5), 345; https://doi.org/10.3390/membranes11050345 - 8 May 2021
Cited by 17 | Viewed by 4673
Abstract
This study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration [...] Read more.
This study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration of contaminants present in the PSW to meet the City of Cape Town (CoCT) discharge standards and evaluate an alternative means of treating medium- to high-strength wastewater at low cost. The EGSB used in this study was operated under mesophilic conditions and at an organic loading rate (OLR) of 69 to 456 mg COD/L·h. The pretreatment stage of this laboratory-scale (lab-scale) plant played an important role in the pretreatment of the PSW, with removal percentages varying between 20% and 50% for total suspended solids (TSS), 20% and 70% for chemical oxygen demand (COD), and 50% and 83% for fats, oil, and grease (FOG). The EGSB further reduced the concentration of these contaminants to between 25% and 90% for TSS, 20% and 80% for COD, and 20% and >95% for FOG. The last stage of this process, i.e., the membrane bioreactor (MBR), contributed to a further decrease in the concentration of these contaminants with a peak removal performance of >95% for TSS and COD and 80% for the FOG. Overall, the system (pretreatment–EGSB–MBR) exceeded 97% for TSS and COD removal and 97.5% for FOG removal. These results culminated in a product (treated wastewater) meeting the discharge standards. Full article
(This article belongs to the Special Issue Anaerobic Membrane Bioreactor for Wastewater Treatment)
Show Figures

Graphical abstract

16 pages, 1444 KiB  
Article
A Two-Stage Process for Conversion of Brewer’s Spent Grain into Volatile Fatty Acids through Acidogenic Fermentation
by Eliana C. Guarda, Ana Catarina Oliveira, Sílvia Antunes, Filomena Freitas, Paula M. L. Castro, Anouk F. Duque and Maria A. M. Reis
Appl. Sci. 2021, 11(7), 3222; https://doi.org/10.3390/app11073222 - 3 Apr 2021
Cited by 18 | Viewed by 3586
Abstract
This work is focused on the valorization of brewer’s spent grains (BSG) into volatile fatty acids (VFA) through acidogenic fermentation. VFAs are building blocks for several applications, such as bioplastics’ production. Using acid hydrolysis as pre-treatment, several batch assays were performed and the [...] Read more.
This work is focused on the valorization of brewer’s spent grains (BSG) into volatile fatty acids (VFA) through acidogenic fermentation. VFAs are building blocks for several applications, such as bioplastics’ production. Using acid hydrolysis as pre-treatment, several batch assays were performed and the impact of organic load (OL) and pH on VFA production from BSG hydrolysate was assessed. Regardless of the condition, the produced acids were mainly butyric and acetic acids followed by propionic acid. The OL had a direct impact on the total organic acid concentration with higher concentrations at the highest OL (40 gCOD L−1). pH affected the concentration of individual organic acid, with the highest fermentation products (FP) diversity attained at pH 5.0 and OL of 40 gCOD L−1. To assess the potential application of organic acids for biopolymers (such as polyhydroxyalkanoates) production, the content in hydroxybutyrate (HB) and hydroxyvalerate (HV) monomers was estimated from the respective precursors produced at each pH and OL. The content in HV precursors increased with pH, with a maximum at pH 6.0 (ca. 16% C-mol basis). The acidogenic fermentation of BSG hydrolysate was also assessed in continuous operation, using an expanded granular sludge bed reactor (EGSB). It was shown that the BSG hydrolysate was successfully converted to VFAs without pH control, achieving higher productivities than in the batch operation mode. Full article
Show Figures

Figure 1

15 pages, 2666 KiB  
Article
Feasibility of Adjusting the S2O32−/NO3 Ratio to Adapt to Dynamic Influents in Coupled Anammox and Denitrification Systems
by Yuqian Hou, Shaoju Cheng, Mengliang Wang, Chenyong Zhang and Bo Liu
Int. J. Environ. Res. Public Health 2020, 17(7), 2200; https://doi.org/10.3390/ijerph17072200 - 25 Mar 2020
Cited by 6 | Viewed by 3106
Abstract
In this study, anammox, sulfur-based autotrophic denitrification, and heterotrophic denitrification (A/SAD/HD) were coupled in an expanded granular sludge bed (EGSB) reactor to explore the feasibility of enhancing denitrification performance by adjusting the S2O32−/NO3 (S/N) ratio to [...] Read more.
In this study, anammox, sulfur-based autotrophic denitrification, and heterotrophic denitrification (A/SAD/HD) were coupled in an expanded granular sludge bed (EGSB) reactor to explore the feasibility of enhancing denitrification performance by adjusting the S2O32−/NO3 (S/N) ratio to accommodate dynamic influents. The results indicated that the optimal influent conditions occurred when the conversion efficiency of ammonium (CEA) was 55%, the S/N ratio was 1.24, and the chemical oxygen demand (COD) was 50 mg/L, which resulted in a total nitrogen removal efficiency (NRE) of 95.0% ± 0.5%. The S/N ratio regulation strategy was feasible when the influent COD concentration was less than 100 mg/L and the CEA was between 57% and 63%. Characterization by 16S rRNA sequencing showed that Candidatus Jettenia might have contributed the most to anammox, while Thiobacillus and Denitratisoma were the dominant taxa related to denitrification. The findings of this study provide insights into the effects of CEA and COD on the performance of the A/SAD/HD system and the feasibility of the S/N ratio regulation strategy. Full article
(This article belongs to the Special Issue Innovative Processes in Wastewater Treatment)
Show Figures

Graphical abstract

10 pages, 2051 KiB  
Article
Effects of N/S Molar Ratio on Product Formation in Psychrophilic Autotrophic Biological Removal of Sulfide
by Michal Sposob, Rune Bakke and Carlos Dinamarca
Water 2017, 9(7), 476; https://doi.org/10.3390/w9070476 - 29 Jun 2017
Cited by 4 | Viewed by 4027
Abstract
The excessive H2S presence in water and wastewater can lead to corrosion, toxicity, and biological processes inhibition—i.e., anaerobic digestion. Production of H2S can occur in psychrophilic conditions. Biological removal of HS by addition of NO3 as [...] Read more.
The excessive H2S presence in water and wastewater can lead to corrosion, toxicity, and biological processes inhibition—i.e., anaerobic digestion. Production of H2S can occur in psychrophilic conditions. Biological removal of HS by addition of NO3 as an electron acceptor under psychrophilic (10 °C) conditions in a continuous flow experiment is evaluated here. Four different N/S molar ratios—0.35, 0.40, 0.60, and 1.30—were tested in an expanded granular sludge bed (EGSB) reactor. Samples were analyzed daily by ion chromatography. Efficient psychrophilic HS removal with sulfur products oxidation control by NO3 supply is documented. The highest HS removal was obtained at N/S = 0.35 and 1.30 (89.1 ± 2.2 and 89.6 ± 2.9%). Removal of HS was less at mid-N/S with the lowest value (76.9 ± 2.6%) at N/S = 0.60. NO3 removal remained high for all N/S ratios. N/S molar ratio influenced the sulfur products distribution with less S0 and increase in SO42− effluent concentration with increasing N/S ratio. Oxidation of HS and accumulated S0 occurred simultaneously at N/S ratios >0.35. The observations are explained by culture flexibility in utilizing available resources for energy gain. Full article
Show Figures

Figure 1

Back to TopTop