Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (188)

Search Parameters:
Keywords = exhaust gas components

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 263
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Article
Deep Hybrid Model for Fault Diagnosis of Ship’s Main Engine
by Se-Ha Kim, Tae-Gyeong Kim, Junseok Lee, Hyoung-Kyu Song, Hyeonjoon Moon and Chang-Jae Chun
J. Mar. Sci. Eng. 2025, 13(8), 1398; https://doi.org/10.3390/jmse13081398 - 23 Jul 2025
Viewed by 197
Abstract
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, [...] Read more.
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, early fault diagnosis of abnormal engine conditions is critical for effective maintenance. In this paper, we propose a deep hybrid model for fault diagnosis of ship main engines, utilizing exhaust gas temperature data. The proposed model utilizes both time-domain features (TDFs) and time-series raw data. In order to effectively extract features from each type of data, two distinct feature extraction networks and an attention module-based classifier are designed. The model performance is evaluated using real-world cylinder exhaust gas temperature data collected from the large ship low-speed two-stroke main engine. The experimental results demonstrate that the proposed method outperforms conventional methods in fault diagnosis accuracy. The experimental results demonstrate that the proposed method improves fault diagnosis accuracy by 6.146% compared to the best conventional method. Furthermore, the proposed method maintains superior performanceeven in noisy environments under realistic industrial conditions. This study demonstrates the potential of using exhaust gas temperature using a single sensor signal for data-driven fault detection and provides a scalable foundation for future multi-sensor diagnostic systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2556 KiB  
Article
Fatigue Life Analysis of In Situ Conversion Burner Heaters for Oil Shale Based on the Numerical Simulation Method
by Xiaoqing Duan, Fujian Ren, Weihua Zhang, Xiaohong Zhang and Yuan Wang
Energies 2025, 18(11), 2963; https://doi.org/10.3390/en18112963 - 4 Jun 2025
Viewed by 363
Abstract
Oil shale, an unconventional oil and gas resource, can generate the required hydrocarbons through high-temperature pyrolysis. In situ conversion extraction technology utilizes downhole heaters to directly inject high-temperature heat into the oil shale layer to achieve the effect of oil and gas recovery. [...] Read more.
Oil shale, an unconventional oil and gas resource, can generate the required hydrocarbons through high-temperature pyrolysis. In situ conversion extraction technology utilizes downhole heaters to directly inject high-temperature heat into the oil shale layer to achieve the effect of oil and gas recovery. For the metal material components of the combustion heaters, the uneven temperature fields experienced during the start of operations, processing, and end of operations can lead to fatigue conditions, such as high-temperature creep, micro-damage, and micro-deformation due to thermal effects. To prevent the occurrence of the aforementioned issues, it is necessary to conduct fatigue life analysis of downhole combustion heaters. By combining actual combustion heater operation experiments with finite element simulation, this paper analyzes the impact of temperature, structure, and stress amplitude on the fatigue life of heaters. The results indicate that the fatigue life of the heaters is most significantly influenced by the metal gaskets, and the higher the exhaust gas temperature, the lower the fatigue life of the heater. Heating operations significantly reduce the fatigue life of the heater, while cooling operations have almost no effect on the fatigue life. Circular-pore metal gaskets have a higher fatigue life than those with a square hole shape. Considering only the thickness of the metal gaskets, the thicker the gasket, the higher the fatigue life. Stress amplitude has the most significant impact on the fatigue life of the heater; when the stress amplitude is doubled, the metal gaskets quickly undergo fatigue damage. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 2526 KiB  
Article
Content of Selected Compounds in the Exhaust Gas of a Naturally Aspirated CI Engine Fueled with Diesel–Tire Pyrolysis Oil Blend
by Leszek Chybowski, Marcin Szczepanek, Waldemar Kuczyński, Iwona Michalska-Pożoga, Tomasz Pusty, Piotr Brożek and Robert Pełech
Energies 2025, 18(10), 2621; https://doi.org/10.3390/en18102621 - 19 May 2025
Cited by 1 | Viewed by 403
Abstract
This paper presents the results of naturally aspirated compression ignition (CI) internal combustion engine (ICE) bench tests of fuels in the form of a blend of diesel oil with recycled oil (RF) in the form of tire pyrolysis oil (TPO) as an admixture [...] Read more.
This paper presents the results of naturally aspirated compression ignition (CI) internal combustion engine (ICE) bench tests of fuels in the form of a blend of diesel oil with recycled oil (RF) in the form of tire pyrolysis oil (TPO) as an admixture with the content of pyrolytic oil with the blend being 10% m/m (D90+RF10). The results relate to reference conditions in which the engine is fed with pure diesel oil (D100). The experiment included the evaluation of engine performance and the determination of the content of selected substances in the exhaust gas for brake-set engine loads equal to 5 Nm, 10 Nm, 15 Nm, and 20 Nm. For each load, engine operating parameters and emissions of selected exhaust components were recorded at preset speeds in the range of 1400–2400 rpm for each engine load. The hourly fuel consumption and exhaust gas temperature were determined. The contents of CO2, CO, and HC in the exhaust gas were measured. The consumption of D90+RF10 increased by 56%, and CO2 emissions were 21.7% higher at low loads. The addition of sulfur-containing pyrolytic oil as an admixture to diesel oil resulted in SOx emissions. The results show the suitability of pyrolytic oil and the possibility of using it as an admixture to fossil fuels. In order to meet SOx emission levels in land-based installations and for vehicle propulsion, it is necessary to desulfurize fuel or desulfurize deSOx exhaust gas systems. The CO and HC emission levels in the exhaust gases from the engine powered by the D90+RF10 fuel meet current requirements for motor vehicle exhaust composition. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2025)
Show Figures

Figure 1

16 pages, 5245 KiB  
Article
Intelligent Thermal Condition Monitoring for Predictive Maintenance of Gas Turbines Using Machine Learning
by Sadiq T. Bunyan, Zeashan Hameed Khan, Luttfi A. Al-Haddad, Hayder Abed Dhahad, Mustafa I. Al-Karkhi, Ahmed Ali Farhan Ogaili and Zainab T. Al-Sharify
Machines 2025, 13(5), 401; https://doi.org/10.3390/machines13050401 - 11 May 2025
Viewed by 1340
Abstract
Gas turbines play a crucial role in power generation and aviation, where effective maintenance strategies are essential to ensure reliability. Traditional condition monitoring methods often rely on scheduled inspections, leading to potential downtime and increased maintenance costs. This study presents an AI-driven approach [...] Read more.
Gas turbines play a crucial role in power generation and aviation, where effective maintenance strategies are essential to ensure reliability. Traditional condition monitoring methods often rely on scheduled inspections, leading to potential downtime and increased maintenance costs. This study presents an AI-driven approach for thermal condition monitoring and the predictive maintenance of gas turbines using machine learning. An Extreme Gradient Boosting (XGBoost)-based classification model was developed to distinguish between healthy and faulty operating conditions based on thermal load data. The dataset, collected over six months from strategically placed thermocouples in the exhaust gas section, was processed to extract key statistical features such as mean temperature, standard deviation, and skewness. The proposed XGBoost model achieved a classification accuracy (CA) of 97.2%, with an F1-score of 96.8%, precision of 97.5%, and recall of 96.1%, demonstrating its effectiveness in detecting anomalies. The results indicate that the integration of machine learning in gas turbine monitoring significantly enhances fault detection capabilities, enabling proactive maintenance strategies and reducing the risk of critical failures. This study provides valuable insights for data-driven maintenance strategies, optimizing operational efficiency and extending the lifespan of gas turbine components. Future work will focus on real-time deployment and further validation with extended datasets. Full article
Show Figures

Figure 1

27 pages, 3097 KiB  
Article
An Improved Whale Optimization Algorithm for the Clean Production Transformation of Automotive Body Painting
by Qin Yang, Xinning Li, Teng Yang, Hu Wu and Liwen Zhang
Biomimetics 2025, 10(5), 273; https://doi.org/10.3390/biomimetics10050273 - 28 Apr 2025
Viewed by 425
Abstract
Research on clean production in automotive painting processes is a core component of achieving green manufacturing, addressing environmental regulatory challenges, and advancing sustainable development in the automotive industry by reducing volatile organic compound (VOC) emissions, optimizing resource utilization, and minimizing energy consumption. To [...] Read more.
Research on clean production in automotive painting processes is a core component of achieving green manufacturing, addressing environmental regulatory challenges, and advancing sustainable development in the automotive industry by reducing volatile organic compound (VOC) emissions, optimizing resource utilization, and minimizing energy consumption. To reduce pollutants generated by automotive painting processes and improve coating efficiency, this study proposes a clean production method for automotive body painting based on an improved whale optimization algorithm from the perspective of “low-carbon consumption and emission-reduced production”. A multi-level, multi-objective decision-making model is developed by integrating three dimensions of clean production: material flow (optimizing material costs), energy flow (minimizing painting energy consumption), and environmental emission flow (reducing carbon emissions and processing time). The whale optimization algorithm is enhanced through three key modifications: the incorporation of nonlinear convergence factors, elite opposition-based learning, and dynamic parameter self-adaptation, which are then applied to optimize the automotive painting model. Experimental validation using the painting processes of TJ Corporation’s New Energy Vehicles (NEVs) demonstrates the superiority of the proposed algorithm over the MHWOA, WOA-RBF, and WOA-VMD. Results show that the method achieves a 42.1% increase in coating production efficiency, over 98% exhaust gas purification rate, 18.2% average energy-saving improvement, and 17.9% reduction in manufacturing costs. This green transformation of low-carbon emission-reduction infrastructure in painting processes delivers significant economic and social benefits, positioning it as a sustainable solution for the automotive industry. Full article
Show Figures

Figure 1

16 pages, 1578 KiB  
Article
Plume Characterization of Electrodeless Plasma Thruster with Configurable Exhaust
by Artur A. Andronov, Andrei I. Shumeiko, Aslan D. Pashaev, Petr A. Tsygankov, Sergei V. Kovalev and Victor D. Telekh
Symmetry 2025, 17(5), 661; https://doi.org/10.3390/sym17050661 - 26 Apr 2025
Viewed by 495
Abstract
Currently, there is a need for dynamic space missions based on small satellites. These missions can be supported by propulsion systems with thrust-vectoring capabilities. This capability can be realized based on electrodeless plasma thrusters (EPTs). EPTs stand out for their versatility, offering adjustable [...] Read more.
Currently, there is a need for dynamic space missions based on small satellites. These missions can be supported by propulsion systems with thrust-vectoring capabilities. This capability can be realized based on electrodeless plasma thrusters (EPTs). EPTs stand out for their versatility, offering adjustable thrust characteristics and fewer components, making them ideal for small satellites. However, their efficiency remains below optimal levels, largely due to complexities in plasma acceleration. This research aims to better understand dominant acceleration mechanisms in EPTs by studying ion energy distribution function changes based on exhaust orifice diameter and power variations. The total power supplied to the thruster varies in the range of 24 to 40 W, and the exhaust diameter varies in the range from 6.5 to 10.5 mm. It was found that the ion velocity does not change as a function of the diameter of the exit aperture. This indicates the insignificance of the mechanism of the gas-dynamic acceleration of plasma in EPTs with a small form factor and supports recent views that the main contribution to the acceleration of particles in EPT is made by electromagnetic effects. The findings could help refine EPT designs, enhancing their overall effectiveness and reliability for future space missions. Full article
Show Figures

Figure 1

24 pages, 12702 KiB  
Article
Thermodynamic Evaluation of the Hybrid Combined Cycle Power Plant in the Valley of Mexico
by Ladislao Eduardo Méndez-Cruz, Martín Salazar-Pereyra, Raúl Lugo-Leyte, Mauricio Sales-Cruz, Alejandro Torres-Aldaco and Helen D. Lugo-Méndez
Energies 2025, 18(8), 1901; https://doi.org/10.3390/en18081901 - 9 Apr 2025
Viewed by 512
Abstract
Modern power generation aims to maximize the extraction of thermal energy from fossil fuels to produce electricity. Combined cycle power plants, leaders in efficiency, sometimes require an additional steam generator to compensate for insufficient exhaust gas energy in the heat recovery steam generator [...] Read more.
Modern power generation aims to maximize the extraction of thermal energy from fossil fuels to produce electricity. Combined cycle power plants, leaders in efficiency, sometimes require an additional steam generator to compensate for insufficient exhaust gas energy in the heat recovery steam generator (HRSG), leading to hybrid combined cycles. This study presents a comprehensive thermodynamic analysis of the hybrid combined cycle power plant located in the Valley of Mexico, operating under both full-load and partial-load conditions. The investigation begins with an energy analysis evaluating key performance parameters under real operating conditions, including the power generation, heat flow supply, thermal efficiency, fuel consumption rates, steam flow, and specific fuel consumption. Subsequently, the analysis examines the performance of the steam cycle using the β factor, which quantifies the relationship between heat flows in the steam generator and the HRSG, to maintain a constant steam flow. This evaluation aims to determine the potential utilization of exhaust gas residual energy for partial steam flow generation in the steam turbine. The study concludes with an exergy analysis to quantify the internal irreversibility flows within the system components and determine the overall exergy efficiency of the power plant. The results demonstrate that, under 100% load conditions, the enhanced utilization of exhaust gases from the HRSG leads to fuel savings of 33,903.36 tons annually and increases the exergy efficiency of the hybrid combined cycle power plant to 54.08%. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

25 pages, 4525 KiB  
Review
Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
by Binbin Jin, Liwei Liao, Xinyi Shen, Zhe Mei, Qingcheng Du, Liying Liang, Bingxin Lei and Jun Du
Metals 2025, 15(4), 386; https://doi.org/10.3390/met15040386 - 29 Mar 2025
Cited by 2 | Viewed by 3651
Abstract
Silicon stands out as an exceptionally viable anode material, distinguished by its substantial capacity, plentiful natural reserves, eco-friendliness, and favorable low working potential. Nonetheless, the material’s pronounced volume fluctuations readily induce particle fragmentation, detachment of active components, and repeated disruption of the solid [...] Read more.
Silicon stands out as an exceptionally viable anode material, distinguished by its substantial capacity, plentiful natural reserves, eco-friendliness, and favorable low working potential. Nonetheless, the material’s pronounced volume fluctuations readily induce particle fragmentation, detachment of active components, and repeated disruption of the solid electrolyte interphase (SEI) layer. These factors contribute to a shortened cycle life and rapid capacity fading, thus hindering its practical application. The carbon composite approach can efficiently counteract these issues by capitalizing on silicon’s high capacity and employing carbon as a cushioning agent to diminish volume swelling, thus enhancing the deployment of silicon-based anode materials. This paper offers an exhaustive examination of the lithiation processes involved in Si/C anodes and delves into the strategic utilization of diverse carbon materials, including graphite, graphene, graphdiyne, carbon nanotubes, carbon fibers, MXenes, pitch, heteroatom-doped polymers, biomass-derived carbon, carbon-containing gas-derived carbon, MOFs, and g-C3N4 to advance the application of silicon in lithium-ion battery (LIB) anodes. Overall, this paper concentrates on summarizing the current research status and technological advancement and juxtaposes the merits and demerits of various carbon sources in Si/C anodes, thus providing a comprehensive assessment and forward-looking perspective on their future development. Full article
Show Figures

Figure 1

12 pages, 3073 KiB  
Article
A Comparative Study of Combustion Characteristics for the Evaluation of the Feasibility of Crude Bioethanol as a Substitute for Marine Fuel Oil
by Ju-Wan Kim and Tae-Ho Lee
J. Mar. Sci. Eng. 2025, 13(3), 433; https://doi.org/10.3390/jmse13030433 - 25 Feb 2025
Viewed by 673
Abstract
In this study, the potential use of corn-based crude bioethanol was investigated as an alternative energy source for marine fuel oil under increasingly stringent maritime emissions regulations. A small-scale combustion chamber with a capacity of approximately 1 ton was developed, and comparative combustion [...] Read more.
In this study, the potential use of corn-based crude bioethanol was investigated as an alternative energy source for marine fuel oil under increasingly stringent maritime emissions regulations. A small-scale combustion chamber with a capacity of approximately 1 ton was developed, and comparative combustion tests were conducted with various fuel types, including MGO, diesel, kerosene, and BE100. In addition, component analysis was performed and compared using the ISO-8217 method. Complete combustion of the fuel was performed under the same experimental conditions of stable atmospheric pressure and temperature. BE100 exhibited an 8.3% increase in the oxygen concentration and a 5.9% reduction in the carbon dioxide emissions compared to MGO. Despite the low nitrogen oxide (NOx) emissions of MGO at approximately 34.4 ppm, BE100 demonstrated superior reduction potential, with a reading of 1.9 ppm. Sulfur oxides (SOx) were not detected in any of the fuels tested, underscoring the high quality of the currently available low-sulfur MGO. The exhaust gas temperatures were reduced by approximately 44.6% when using BE100, from 367.1 °C for MGO to 203.2 °C for BE100. However, the combustion efficiency of BE100 was 8.3% lower than that of MGO. While crude bioethanol shows promise in reducing exhaust gas emissions, its limited thermal output poses a challenge for direct substitution. Future studies should investigate the development of blended fuels combining bioethanol and conventional marine fuels to improve the performance and sustainability. Full article
Show Figures

Figure 1

20 pages, 3480 KiB  
Article
Impact of Vehicle Aging and Mileage on Air Pollution Emissions
by Piotr Pryciński, Jacek Pielecha, Jarosław Korzeb, Roland Jachimowski and Piotr Pielecha
Energies 2025, 18(4), 939; https://doi.org/10.3390/en18040939 - 16 Feb 2025
Cited by 2 | Viewed by 1548
Abstract
The research described in this paper aimed to verify the impact of road vehicle aging on air pollutant emissions. The problem of vehicle aging and the resulting changing air pollutant emissions was identified with the operational mileage of passenger cars. The validity of [...] Read more.
The research described in this paper aimed to verify the impact of road vehicle aging on air pollutant emissions. The problem of vehicle aging and the resulting changing air pollutant emissions was identified with the operational mileage of passenger cars. The validity of such an approach to research on air pollutant emissions changing over time was confirmed by a preliminary review of publications in scientific databases such as Scopus and Web of Science. The research problem presented in this paper was to assess the impact of vehicle aging on essential air pollutant emissions (CO, CO2, NOX). The research method included measuring the actual RDE air pollutant emissions using research equipment, i.e., the SEMTECH DS gaseous exhaust gas component analyzer. This study was conducted on vehicles with diesel engines, different operating ages, different mileages, and engines with similar displacement, mostly 1.9–2.0 dm3, and equipped with manual transmissions. The tests were conducted in the Poznań agglomeration. The results of measured air pollutant emissions in the RDE mode allowed for mapping the changes in air pollutant emissions for diesel engine vehicles with similar displacement as a function of operating age (mileage) and also for collecting preliminary data for analyses in the field of modeling road air pollutant emissions within the vehicle aging phenomenon. Full article
(This article belongs to the Special Issue CO2 Emissions from Vehicles (Volume II))
Show Figures

Figure 1

20 pages, 4855 KiB  
Article
Potential of PN Reduction in Passenger Cars with DPF and GPF
by Zbigniew Stepien, Pierre Comte, Danilo Engelmann, Jan Czerwinski, Andreas Mayer and Lauretta Rubino
Energies 2025, 18(3), 494; https://doi.org/10.3390/en18030494 - 22 Jan 2025
Viewed by 743
Abstract
Particle number concentration (PN) in vehicle exhaust and ambient air describes the number of ultrafine particles (UFPs) below 500 nm, which are recognized as a toxic and carcinogenic component of pollution and are regulated in several countries. Metal nuclei, ash, and organic matter [...] Read more.
Particle number concentration (PN) in vehicle exhaust and ambient air describes the number of ultrafine particles (UFPs) below 500 nm, which are recognized as a toxic and carcinogenic component of pollution and are regulated in several countries. Metal nuclei, ash, and organic matter contribute significantly to the ultrafine particle size fraction and, thus, to the particle number concentration. Exhaust gas filtration is increasingly being used worldwide to significantly reduce this pollution, both on diesel particulate filter (DPF) and gasoline particulate filter (GPF) engines. In recent years, the EU has also funded research projects dealing with the possibilities of retrofitting gasoline vehicles with GPFs. This paper presents the results and compares the PN emissions of different vehicles. An original equipment manufacturer (OEM) diesel car with a DPF is considered as a benchmark. The PN emissions of this car are compared with a CNG car without filtration and with gasoline cars equipped with GPFs. It can be concluded that the currently used GPFs still have some potential to improve their filtration efficiency and that a modern CNG car would still have remarkable possibilities to reduce PN emissions with an improved quality GPF. Full article
Show Figures

Figure 1

27 pages, 8858 KiB  
Review
Review of Pre-Ignition Research in Methanol Engines
by Zhijie Li, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Xinbo Wu, Tianwei Ma and Yunliang Qi
Energies 2025, 18(1), 133; https://doi.org/10.3390/en18010133 - 31 Dec 2024
Viewed by 1123
Abstract
Methanol can be synthesized using green electricity and carbon dioxide, making it a green, carbon-neutral fuel with significant potential for widespread application in engines. However, due to its low ignition energy and high laminar flame speed, methanol is susceptible to hotspot-induced pre-ignition and [...] Read more.
Methanol can be synthesized using green electricity and carbon dioxide, making it a green, carbon-neutral fuel with significant potential for widespread application in engines. However, due to its low ignition energy and high laminar flame speed, methanol is susceptible to hotspot-induced pre-ignition and even knocking under high-temperature, high-load engine conditions, posing challenges to engine performance and reliability. This paper systematically reviews the manifestations and mechanisms of pre-ignition and knocking in methanol engines. Pre-ignition can be sustained or sporadic. Sustained pre-ignition is caused by overheating of structural components, while sporadic pre-ignition is often linked to oil droplets entering the combustion chamber from the piston crevice. Residual exhaust gas trapped within the spark plug can also initiate pre-ignition. Knocking, characterized by pressure oscillations, arises from the auto-ignition of hotspots in the end-gas or, potentially, from deflagration-to-detonation transition, although the latter requires further experimental validation. Factors influencing pre-ignition and knocking, including engine oil, in-cylinder deposits, structural hotspots, and the reactivity of the air–fuel mixture, are also analyzed. Based on these factors, the paper concludes that the primary approach to suppressing pre-ignition and knocking in methanol engines is controlling the formation of pre-ignition sources and reducing the reactivity of the air–fuel mixture. Furthermore, it addresses existing issues and limitations in current research, such as combustion testing techniques, numerical simulation accuracy, and the mechanisms of methanol–oil interaction, and offers related recommendations. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

20 pages, 4418 KiB  
Article
Vibroacoustic Study of a Miniature Jet Engine Under Blade-Casing Rubbing Condition
by Bartłomiej Cywka, Wojciech Prokopowicz, Bartosz Ciupek, Grzegorz M. Szymański, Daniel Mokrzan and Andrzej Frąckowiak
Energies 2025, 18(1), 27; https://doi.org/10.3390/en18010027 - 25 Dec 2024
Cited by 1 | Viewed by 925
Abstract
Turbine engines are currently one of the most important and expensive aircraft components. Both for economic and safety reasons, high engine reliability is required. Therefore, sophisticated methods are needed to determine their current condition. Diagnostics of turbine engines allow for the detection of [...] Read more.
Turbine engines are currently one of the most important and expensive aircraft components. Both for economic and safety reasons, high engine reliability is required. Therefore, sophisticated methods are needed to determine their current condition. Diagnostics of turbine engines allow for the detection of faults before they lead to damage. The article presents methods and results of vibroacoustic diagnostics of a miniature GTM400 jet engine adapted to kerosene and hydrogen fuel supply. During thermal and vibroacoustic tests of engine parameters powered by hydrogen fuel supply, the engine seized up in the initial start-up phase due to improper control and rapid thermal changes in the gas line. The cause of the undesirable technical condition of the engine was a significantly higher temperature of gases (exhaust gases) affecting the working elements of the engine (turbine shaft, rotor, and blades), which consequently led to engine damage. This phenomenon and the results obtained from the unexpected technical condition constitute a valuable premise for considering the issue of proper operation of the turbojet engine during fuel changes, especially following current trends related to the decarbonization of the aviation sector. The obtained research results and the resulting observations and conclusions make it necessary to perform technical analyses and pre-implementation tests each time before allowing the use of a conventional engine if it undergoes the process of reconstruction in terms of using a new fuel (especially if its technical parameters are different from the originally used one). The presented method of conducting tests allows for a detailed determination of the causes of damage to the cooperating elements of the engine structure under the influence of changes in operating parameters. Full article
Show Figures

Figure 1

15 pages, 5132 KiB  
Article
Experimental Assessment of Energy-Ecological Parameters of Biogas-Powered Tractor Within Circular Economy
by Andrzej Kuranc, Sebastian Bawej, Tomasz Słowik, Branislav Šarkan, Agnieszka Dudziak, Grzegorz Zając, Francesco Paciolla, Simone Pascuzzi and Katarzyna Łyp-Wrońska
Energies 2025, 18(1), 7; https://doi.org/10.3390/en18010007 - 24 Dec 2024
Cited by 2 | Viewed by 894
Abstract
One of the solutions contributing to the development of energy independence is the utilization of biogas as an alternative fuel for agricultural tractors. Biogas is recognized as a renewable energy source, and its usage aids in the reduction in greenhouse gas emissions on [...] Read more.
One of the solutions contributing to the development of energy independence is the utilization of biogas as an alternative fuel for agricultural tractors. Biogas is recognized as a renewable energy source, and its usage aids in the reduction in greenhouse gas emissions on a global scale. The reuse of this material/waste exemplifies the concept of a circular economy. Several models of agricultural tractors designed explicitly for biogas utilization or adaptable for its use are available in the market. This study aimed to evaluate the energy-ecological parameters of the MP tractor (T6.180 Methane Power) powered by Compressed Natural Gas (CNG) in comparison to its structurally identical counterpart fueled by Diesel (T6.180 Electro Command). Based on the Air–Fuel Ratio (AFR) coefficients for diesel and methane, as well as values of air excess ratios (λ) and the proportions of CO and CO2 emissions determined for various engine load states, the mass emission of selected exhaust components for the examined tractors was estimated. This research highlights that biogas-powered tractors hold the potential to contribute to the sustainable development of agriculture through the reduction in greenhouse gas emissions, improvement in farm energy autonomy, and optimal resource utilization, closely aligned with the principles of a circular economy. Full article
(This article belongs to the Collection Bioenergy and Biofuel)
Show Figures

Figure 1

Back to TopTop