Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = etifoxine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1453 KiB  
Article
Exploring the Roles of Vitamins C and D and Etifoxine in Combination with Citalopram in Depression/Anxiety Model: A Focus on ICAM-1, SIRT1 and Nitric Oxide
by Omar Gammoh, Aseel Ibrahim, Ala Yehya, Abdelrahim Alqudah, Esam Qnais, Sara Altaber, Osama Abo Alrob, Alaa A. A. Aljabali and Murtaza M. Tambuwala
Int. J. Mol. Sci. 2024, 25(4), 1960; https://doi.org/10.3390/ijms25041960 - 6 Feb 2024
Cited by 2 | Viewed by 2477
Abstract
The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed [...] Read more.
The study of intercellular adhesion molecule-1 (ICAM-1) and SIRT1, a member of the sirtuin family with nitric oxide (NO), is emerging in depression and anxiety. As with all antidepressants, the efficacy is delayed and inconsistent. Ascorbic acid (AA) and vitamin D (D) showed antidepressant properties, while etifoxine (Etx), a GABAA agonist, alleviates anxiety symptoms. The present study aimed to investigate the potential augmentation of citalopram using AA, D and Etx and related the antidepressant effect to brain and serum ICAM-1, SIRT1 and NO in an animal model. BALB/c mice were divided into naive, control, citalopram, citalopram + etx, citalopram + AA, citalopram + D and citalopram + etx + AA + D for 7 days. On the 8th day, the mice were restrained for 8 h, followed by a forced swim test and marble burying test before scarification. Whole-brain and serum expression of ICAM-1, Sirt1 and NO were determined. Citalopram’s antidepressant and sedative effects were potentiated by ascorbic acid, vitamin D and etifoxine alone and in combination (p < 0.05), as shown by the decreased floating time and rearing frequency. Brain NO increased significantly (p < 0.05) in depression and anxiety and was associated with an ICAM-1 increase versus naive (p < 0.05) and a Sirt1 decrease (p < 0.05) versus naive. Both ICAM-1 and Sirt1 were modulated by antidepressants through a non-NO-dependent pathway. Serum NO expression was unrelated to serum ICAM-1 and Sirt1. Brain ICAM-1, Sirt1 and NO are implicated in depression and are modulated by antidepressants. Full article
Show Figures

Figure 1

10 pages, 900 KiB  
Article
Effect of Etifoxine on Locomotor Activity and Passive Learning in Rats with Diazepam-Induced Cognitive Deficit
by Vesela Kokova and Elisaveta Apostolova
Sci. Pharm. 2023, 91(2), 25; https://doi.org/10.3390/scipharm91020025 - 4 May 2023
Cited by 2 | Viewed by 4319
Abstract
Etifoxine is an anxiolytic drug with a dual mechanism of action. In contrast to conventional benzodiazepine anxiolytics, which induce cognitive dysfunction and myorelaxation, no memory impairment nor a decrease in motor activity is observed with etifoxine. This study aims to evaluate the effects [...] Read more.
Etifoxine is an anxiolytic drug with a dual mechanism of action. In contrast to conventional benzodiazepine anxiolytics, which induce cognitive dysfunction and myorelaxation, no memory impairment nor a decrease in motor activity is observed with etifoxine. This study aims to evaluate the effects of etifoxine on locomotor activity and passive learning in rats with diazepam-induced memory deficit. Male Wistar rats were treated intraperitoneally for 7 days with: (1) saline; (2) diazepam 2.5 mg/kg bw or (3) diazepam 2.5 mg/kg bw and etifoxine in a dose of 50 mg/kg bw. Activity cage test was used for evaluation of locomotor activity, and step-through and step-down tests were performed to study the passive learning. Etifoxine increased the number of horizontal movements on the 7th and 14th days of the experiment. The drug exhibits anti-amnesic effect in a model of diazepam-induced anterograde amnesia by enhancing long-term memory in passive learning tests. The data obtained suggest that etifoxine can reduce the benzodiazepine-induced cognitive deficit. Moreover, such a combination can alleviate the negative influence of benzodiazepines on locomotor activity. However, additional studies are necessary to translate these results into clinical practice. Full article
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Etifoxine Restores Mitochondrial Oxidative Phosphorylation and Improves Cognitive Recovery Following Traumatic Brain Injury
by Eilam Palzur, Doron Edelman, Reem Sakas and Jean Francois Soustiel
Int. J. Mol. Sci. 2021, 22(23), 12881; https://doi.org/10.3390/ijms222312881 - 28 Nov 2021
Cited by 25 | Viewed by 3058
Abstract
The opening of the mitochondrial permeability transition pore (mPTP) has emerged as a pivotal event following traumatic brain injury (TBI). Evidence showing the impact of the translocator protein (TSPO) over mPTP activity has prompted several studies exploring the effect of TSPO ligands, including [...] Read more.
The opening of the mitochondrial permeability transition pore (mPTP) has emerged as a pivotal event following traumatic brain injury (TBI). Evidence showing the impact of the translocator protein (TSPO) over mPTP activity has prompted several studies exploring the effect of TSPO ligands, including etifoxine, on the outcome of traumatic brain injury (TBI). Mitochondrial respiration was assessed by respirometry in isolated rat brain mitochondria (RBM) by measurements of oxidative phosphorylation capacity (OXPHOS). The addition of calcium to RBM was used to induce mitochondrial injury and resulted in significant OXPHOS reduction that could be reversed by preincubation of RBM with etifoxine. Sensorimotor and cognitive functions were assessed following controlled cortical impact and compared in vehicle and etifoxine-treated animals. There was no difference between the vehicle and etifoxine groups for sensorimotor functions as assessed by rotarod. In contrast, etifoxine resulted in a significant improvement of cognitive functions expressed by faster recovery in Morris water maze testing. The present findings show a significant neuroprotective effect of etifoxine in TBI through restoration of oxidative phosphorylation capacity associated with improved behavioral and cognitive outcomes. Since etifoxine is a registered drug used in common clinical practice, implementation in a phase II study may represent a reasonable step forward. Full article
(This article belongs to the Special Issue Mitochondria-Targeted Approaches in Health and Disease 2.0)
Show Figures

Figure 1

28 pages, 2458 KiB  
Review
Diagnostic and Therapeutic Potential of TSPO Studies Regarding Neurodegenerative Diseases, Psychiatric Disorders, Alcohol Use Disorders, Traumatic Brain Injury, and Stroke: An Update
by Jasmina Dimitrova-Shumkovska, Ljupcho Krstanoski and Leo Veenman
Cells 2020, 9(4), 870; https://doi.org/10.3390/cells9040870 - 2 Apr 2020
Cited by 56 | Viewed by 8431
Abstract
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, [...] Read more.
Neuroinflammation and cell death are among the common symptoms of many central nervous system diseases and injuries. Neuroinflammation and programmed cell death of the various cell types in the brain appear to be part of these disorders, and characteristic for each cell type, including neurons and glia cells. Concerning the effects of 18-kDa translocator protein (TSPO) on glial activation, as well as being associated with neuronal cell death, as a response mechanism to oxidative stress, the changes of its expression assayed with the aid of TSPO-specific positron emission tomography (PET) tracers’ uptake could also offer evidence for following the pathogenesis of these disorders. This could potentially increase the number of diagnostic tests to accurately establish the stadium and development of the disease in question. Nonetheless, the differences in results regarding TSPO PET signals of first and second generations of tracers measured in patients with neurological disorders versus healthy controls indicate that we still have to understand more regarding TSPO characteristics. Expanding on investigations regarding the neuroprotective and healing effects of TSPO ligands could also contribute to a better understanding of the therapeutic potential of TSPO activity for brain damage due to brain injury and disease. Studies so far have directed attention to the effects on neurons and glia, and processes, such as death, inflammation, and regeneration. It is definitely worthwhile to drive such studies forward. From recent research it also appears that TSPO ligands, such as PK11195, Etifoxine, Emapunil, and 2-Cl-MGV-1, demonstrate the potential of targeting TSPO for treatments of brain diseases and disorders. Full article
(This article belongs to the Collection Compartmentilisation of Cellular Signaling)
Show Figures

Figure 1

14 pages, 2334 KiB  
Article
Reduction of Traumatic Brain Damage by Tspo Ligand Etifoxine
by Mona Shehadeh, Eilam Palzur, Liat Apel and Jean Francois Soustiel
Int. J. Mol. Sci. 2019, 20(11), 2639; https://doi.org/10.3390/ijms20112639 - 29 May 2019
Cited by 22 | Viewed by 4062
Abstract
Experimental studies have shown that ligands of the 18 kDa translocator protein can reduce neuronal damage induced by traumatic brain injury by protecting mitochondria and preventing metabolic crisis. Etifoxine, an anxiolytic drug and 18 kDa translocator protein ligand, has shown beneficial effects in [...] Read more.
Experimental studies have shown that ligands of the 18 kDa translocator protein can reduce neuronal damage induced by traumatic brain injury by protecting mitochondria and preventing metabolic crisis. Etifoxine, an anxiolytic drug and 18 kDa translocator protein ligand, has shown beneficial effects in the models of peripheral nerve neuropathy. The present study investigates the potential effect of etifoxine as a neuroprotective agent in traumatic brain injury (TBI). For this purpose, the effect of etifoxine on lesion volume and modified neurological severity score at 4 weeks was tested in Sprague–Dawley adult male rats submitted to cortical impact contusion. Effects of etifoxine treatment on neuronal survival and apoptosis were also assessed by immune stains in the perilesional area. Etifoxine induced a significant reduction in the lesion volume compared to nontreated animals in a dose-dependent fashion with a similar effect on neurological outcome at four weeks that correlated with enhanced neuron survival and reduced apoptotic activity. These results are consistent with the neuroprotective effect of etifoxine in TBI that may justify further translational research. Full article
(This article belongs to the Special Issue TSPO and Brain Disorders)
Show Figures

Figure 1

16 pages, 2273 KiB  
Article
TSPO Ligands Promote Cholesterol Efflux and Suppress Oxidative Stress and Inflammation in Choroidal Endothelial Cells
by Lincoln Biswas, Fahad Farhan, James Reilly, Chris Bartholomew and Xinhua Shu
Int. J. Mol. Sci. 2018, 19(12), 3740; https://doi.org/10.3390/ijms19123740 - 24 Nov 2018
Cited by 40 | Viewed by 6597
Abstract
Choroidal endothelial cells supply oxygen and nutrients to retinal pigment epithelial (RPE) cells and photoreceptors, recycle metabolites, and dispose of metabolic waste through the choroidal blood circulation. Death of the endothelial cells of the choroid may cause abnormal deposits including unesterified and esterified [...] Read more.
Choroidal endothelial cells supply oxygen and nutrients to retinal pigment epithelial (RPE) cells and photoreceptors, recycle metabolites, and dispose of metabolic waste through the choroidal blood circulation. Death of the endothelial cells of the choroid may cause abnormal deposits including unesterified and esterified cholesterol beneath RPE cells and within Bruch’s membrane that contribute to the progression of age-related macular degeneration (AMD), the most prevalent cause of blindness in older people. Translocator protein (TSPO) is a cholesterol-binding protein that is involved in mitochondrial cholesterol transport and other cellular functions. We have investigated the role of TSPO in choroidal endothelial cells. Immunocytochemistry showed that TSPO was localized to the mitochondria of choroidal endothelial cells. Choroidal endothelial cells exposed to TSPO ligands (Etifoxine or XBD-173) had significantly increased cholesterol efflux, higher expression of cholesterol homeostasis genes (LXRα, CYP27A1, CYP46A1, ABCA1 and ABCG1), and reduced biosynthesis of cholesterol and phospholipids from [14C]acetate, when compared to untreated controls. Treatment with TSPO ligands also resulted in reduced production of reactive oxygen species (ROS), increased antioxidant capacity, and reduced release of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and VEGF) induced by oxidized LDL. These data suggest TSPO ligands may offer promise for the treatment of AMD. Full article
Show Figures

Graphical abstract

Back to TopTop