Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = estrogen deprivation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1701 KiB  
Article
Aromatase Inhibitor-Induced Carpal Tunnel Syndrome Immunohistochemical Analysis and Clinical Evaluation: An Observational, Cross-Sectional, Case–Control Study
by Iakov Molayem, Lucian Lior Marcovici, Roberto Gradini, Massimiliano Mancini, Silvia Taccogna and Alessia Pagnotta
J. Clin. Med. 2025, 14(15), 5513; https://doi.org/10.3390/jcm14155513 - 5 Aug 2025
Abstract
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced [...] Read more.
Background/Objectives: Breast cancer was the leading cause of malignant tumors among women in 2022. About two-thirds of breast cancer cases are hormone-receptor-positive. In these patients, aromatase inhibitors are a mainstay of treatment, but associated musculoskeletal symptoms can negatively affect patient compliance. Aromatase-inhibitor-induced carpal tunnel syndrome represents one of the main causes of aromatase inhibitor discontinuation, with a non-compliance rate of up to 67%, potentially leading to increased cancer mortality. This study investigates estrogen receptor expression in aromatase-inhibitor-induced carpal tunnel syndrome tissues, in order to better define its etiopathogenesis and derive preventive or therapeutic measures that can improve aromatase inhibitor patient compliance. To our knowledge, there is no study on this subject in the literature. Methods: Between 2023 and 2024, we recruited 14 patients at the Jewish Hospital of Rome, including seven patients with aromatase-inhibitor-induced carpal tunnel syndrome (study group) and seven with postmenopausal idiopathic carpal tunnel syndrome (control group). Each patient was evaluated based on a clinical visit, a questionnaire, instrumental exams, and serum hormone dosages and were treated with open carpal tunnel release surgery, during which transverse carpal ligament and flexor tenosynovium samples were collected. For immunohistochemical experiments, sections were treated with anti-estrogen receptor α and anti-estrogen receptor β antibodies. Results: The immunohistochemical features in the study and control groups were similar, demonstrating that tissues affected by aromatase-inhibitor-induced carpal tunnel syndrome are targets of direct estrogen action and that estrogen deprivation is correlated with disease etiogenesis. Surgery was effective in patient treatment. Conclusions: Aromatase-inhibitor-induced carpal tunnel syndrome represents a newly defined form of the disease. This syndrome represents one of the main causes of aromatase inhibitor discontinuation, due to its negative impact on the patient’s quality of life. The identification by clinicians of aromatase inhibitor use as a possible risk factor for carpal tunnel syndrome development is of essential importance, as early diagnosis and prompt management can improve patient compliance and overall breast cancer treatment outcomes. Full article
(This article belongs to the Section General Surgery)
Show Figures

Figure 1

15 pages, 2455 KiB  
Article
Paeoniflorin Improves Stroke by Modulating the ESR1 Pathway: Data Mining and Validation Based on Network Approaches
by Zhenshan Sun, Junjie Peng, Jiangbangrui Chu, Zhengyi Wang, Kefan Hu, Zhanpeng Feng, Mingfeng Zhou, Xingqin Wang, Songtao Qi, Zhu Zhang and Ken Kin Lam Yung
Pharmaceuticals 2025, 18(7), 933; https://doi.org/10.3390/ph18070933 - 20 Jun 2025
Viewed by 488
Abstract
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the [...] Read more.
Aim of the study: Traditional Chinese herbs have a unique therapeutic effect on stroke and numerous successful clinical cases. However, these clinical cases are highly dispersed, creating challenges for translational research. This study employs a new paradigm to identify treatment patterns and the active compound interactions contained within these clinical cases, with experimental validation after target screening. Methods and Materials: Stroke-related targets were identified through GEO, DisGeNET, and Genecards. Active ingredients were extracted from BATMAN-TCM 2.0. All herbs and diseases were confirmed by the Pharmacopoeia of the People’s Republic of China (2020 edition) and Medical Subject Heading (MeSH). All networks in this study were constructed by Cytoscape, and data analysis was done by Python. All formulations and herbs were retrieved from the literature review. For the molecular docking process, Autodock was applied as the docking platform, and all the protein structures were downloaded from PDB. For experimental validation after target screening, HT22 cells were incubated with glucose-free DMEM and placed in an anaerobic chamber for 2 h. Subsequently, HT22 cells were reoxygenated for 24 h. Estrogen Receptor 1 (ESR1) protein levels were measured in vitro. Results: seven materials, including Angelicae Sinensis Radix, Pheretima, Chuanxiong Rhizoma, Persicae Semen, Astragali Radix, Carthami Flos, and Radix Paeoniae Rubra, were identified as the core herbs for the treatment of stroke. The targets of the stroke mechanism were screened, and the herbs-compound-target network was constructed. Among them, paeoniflorin (PF) was identified as the core active compound, and its interaction with ESR1 was verified by molecular docking as the key interaction for the treatment of stroke. In vitro experiments showed that PF inhibited cell apoptosis under hypoxia by increasing the expression of ESR1 compared with the oxygen-glucose deprivation-reperfusion (OGD/R) model group. Western showed that PF (100 μM, 200 μM) can significantly increase the decreased ESR1 protein level caused by the OGD/R model. Conclusions: seven key herbs were screened. Further bioinformatics and network pharmacology studies suggested that PF is expected to become a new active compound for the treatment of stroke. In vitro validation further demonstrated that PF enhanced neuronal survival and ESR1 expression under ischemic conditions, supporting its therapeutic candidacy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 2265 KiB  
Article
Combined Radiation and Endocrine Therapies Elicit Benefit in ER+ Breast Cancer
by Anneka L. Johnson, Steven Tau, Austin M. Sloop, Tianyuan Dai, Alyssa M. Roberts, Patricia Muskus, Alexa Warren, Sierra A. Kleist, Riley A. Hampsch, Julie M. Jorns, Rongxiao Zhang, Lesley A. Jarvis and Todd W. Miller
Cancers 2025, 17(12), 1921; https://doi.org/10.3390/cancers17121921 - 9 Jun 2025
Viewed by 569
Abstract
Background: Standard treatment for patients with early-stage estrogen receptor-positive (ER+) breast cancer often includes sequential adjuvant radiation and endocrine therapies. Unfortunately, ~1/3 of patients eventually experience disease recurrence, partly due to residual disease in the form of drug-tolerant persister cancer cells. The anti-cancer [...] Read more.
Background: Standard treatment for patients with early-stage estrogen receptor-positive (ER+) breast cancer often includes sequential adjuvant radiation and endocrine therapies. Unfortunately, ~1/3 of patients eventually experience disease recurrence, partly due to residual disease in the form of drug-tolerant persister cancer cells. The anti-cancer efficacy of radiation therapy is partly attributable to the production of oxyradicals that damage biomolecules. We previously showed that endocrine therapy increases mitochondrial content in ER+ breast cancer cells; we postulated that this may also increase oxidative stress. Methods: Herein, we tested the efficacy of concurrent endocrine and radiation therapies, including both conventional (CDR) and ultra-high dose rate (UHDR) radiation. Results: We found that estrogen deprivation and radiation inhibit cell growth, induce apoptosis, and force cells into an oxidatively stressed state. DNA damage was almost exclusive to cells treated with the combination of endocrine and radiation therapy. Radiation slowed tumor growth in two xenograft models, and combination with estrogen deprivation prolonged the time to regrowth in ZR75-1 tumors. Conclusions: These findings indicate that simultaneous treatment with endocrine and radiation therapies can be advantageous, warranting further evaluation to identify tumor features predictive of response to individual and combination treatments. Full article
(This article belongs to the Collection Oncology: State-of-the-Art Research in the USA)
Show Figures

Figure 1

25 pages, 13199 KiB  
Article
Taurine Prevents Impairments in Skin Barrier Function and Dermal Collagen Synthesis Triggered by Sleep Deprivation-Induced Estrogen Circadian Rhythm Disruption
by Qi Shao, Zhaoyang Wang, Yifang Li, Xun Tang, Ziyi Li, Huan Xia, Qihong Wu, Ruxue Chang, Chunna Wu, Tao Meng, Yufei Fan, Yadong Huang and Yan Yang
Cells 2025, 14(10), 727; https://doi.org/10.3390/cells14100727 - 16 May 2025
Viewed by 1714
Abstract
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women’s skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical [...] Read more.
Sleep deprivation is a prevalent issue that disrupts the circadian rhythm of estrogen, particularly estradiol, thereby significantly affecting women’s skin health and appearance. These disruptions can impair skin barrier functionality and decrease dermal collagen synthesis. In this study, our results demonstrate that topical taurine supplementation promotes the expression of tight junction (TJ)-related proteins and enhances collagen production, effectively restoring skin homeostasis in sleep-deprived female mice. Mechanistically, taurine upregulates the expression of TMEM38B, a gene encoding the TRIC-B trimeric cation channel, resulting in increased intracellular calcium ion levels. This, in turn, promotes the upregulation of TJ-related proteins, such as ZO-1, occludin, and claudin-11 in epidermal cells, while also enhancing the expression of type III collagen in fibroblasts, thus restoring skin homeostasis. These findings suggest that taurine may serve as an alternative to estradiol, effectively improving skin homeostasis disrupted by sleep deprivation while mitigating the potential risks associated with exogenous estrogen supplementation. Collectively, these results provide preliminary insights into the protective mechanisms of taurine against sleep deprivation-induced skin impairments and establish a foundation for its potential application in treating skin conditions related to estrogen imbalances, such as skin aging in menopausal women. Full article
Show Figures

Graphical abstract

16 pages, 4416 KiB  
Article
Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury
by Nicolás Toro-Urrego, Juan P. Luaces, Tamara Kobiec, Lucas Udovin, Sofía Bordet, Matilde Otero-Losada and Francisco Capani
Int. J. Mol. Sci. 2024, 25(22), 12121; https://doi.org/10.3390/ijms252212121 - 12 Nov 2024
Cited by 1 | Viewed by 2964
Abstract
Perinatal asphyxia (PA) is a clinical condition characterized by oxygen supply suspension before, during, or immediately after birth, and it is an important risk factor for neurodevelopmental damage. Its estimated 1/1000 live births incidence in developed countries rises to 5–10-fold in developing countries. [...] Read more.
Perinatal asphyxia (PA) is a clinical condition characterized by oxygen supply suspension before, during, or immediately after birth, and it is an important risk factor for neurodevelopmental damage. Its estimated 1/1000 live births incidence in developed countries rises to 5–10-fold in developing countries. Schizophrenia, cerebral palsy, mental retardation, epilepsy, blindness, and others are among the highly disabling chronic pathologies associated with PA. However, so far, there is no effective therapy to neutralize or reduce PA-induced harm. Selective regulators of estrogen activity in tissues and selective estrogen receptor modulators like raloxifene have shown neuroprotective activity in different pathological scenarios. Their effect on PA is yet unknown. The purpose of this paper is to examine whether raloxifene showed neuroprotection in an oxygen–glucose deprivation/reoxygenation astrocyte cell model. To study this issue, T98G cells in culture were treated with a glucose-free DMEM medium and incubated at 37 °C in a hypoxia chamber with 1% O2 for 3, 6, 12, and 24 h. Cultures were supplemented with raloxifene 10, and 100 nM during both glucose and oxygen deprivation and reoxygenation periods. Raloxifene 100 nM and 10 nM improved cell survival—65.34% and 70.56%, respectively, compared with the control cell groups. Mitochondrial membrane potential was preserved by 58.9% 10 nM raloxifene and 81.57% 100 nM raloxifene cotreatment. Raloxifene co-treatment reduced superoxide production by 72.72% and peroxide production by 57%. Mitochondrial mass was preserved by 47.4%, 75.5%, and 89% in T98G cells exposed to 6-h oxygen–glucose deprivation followed by 3, 6, and 9 h of reoxygenation, respectively. Therefore, raloxifene improved cell survival and mitochondrial membrane potential and reduced lipid peroxidation and reactive oxygen species (ROS) production, suggesting a direct effect on mitochondria. In this study, raloxifene protected oxygen–glucose-deprived astrocyte cells, used to mimic hypoxic–ischemic brain injury. Two examiners performed the qualitative assessment in a double-blind fashion. Full article
(This article belongs to the Special Issue New Trends in Molecular Research of Aneurysm and Brain Injury)
Show Figures

Figure 1

13 pages, 2240 KiB  
Review
Nuclear Receptors: Mechanistic Insights into Endocrine Resistance in Prostate and Breast Cancers
by Macrina Beatriz Silva-Cázares, Stephanie I. Nuñez-Olvera, Ricardo Hernández-Barrientos, Enoc Mariano Cortés-Malagón, María Elizbeth Alvarez-Sánchez and Jonathan Puente-Rivera
Receptors 2024, 3(4), 444-456; https://doi.org/10.3390/receptors3040022 - 14 Oct 2024
Cited by 2 | Viewed by 2174
Abstract
This review focuses on the pivotal roles of nuclear receptors (NRs) in driving endocrine resistance in prostate and breast cancers. In prostate cancer (PCa), androgen receptor (AR) amplification, mutations, and altered coactivator interactions sustain tumor growth under androgen deprivation therapy (ADT), leading to [...] Read more.
This review focuses on the pivotal roles of nuclear receptors (NRs) in driving endocrine resistance in prostate and breast cancers. In prostate cancer (PCa), androgen receptor (AR) amplification, mutations, and altered coactivator interactions sustain tumor growth under androgen deprivation therapy (ADT), leading to castration-resistant prostate cancer (CRPC). Orphan NRs like RORβ, TLX, and COUP-TFII further contribute to CRPC by regulating stemness and therapeutic resistance mechanisms. In breast cancer, NRs, including estrogen receptor alpha (ERα), androgen receptor (AR), glucocorticoid receptor (GR), and liver receptor homolog-1 (LRH-1), modulate estrogen signaling pathways and alternative survival mechanisms like PI3K/AKT/mTOR and NFκB, promoting resistance to endocrine therapies such as tamoxifen. Understanding these NR-mediated mechanisms is critical for developing targeted therapies to overcome endocrine resistance and improve patient outcomes in hormone-dependent cancers. Full article
Show Figures

Figure 1

9 pages, 1179 KiB  
Article
Estetrol Inhibits the Prostate Cancer Tumor Stimulators FSH and IGF-1
by Herjan J. T. Coelingh Bennink, Erik P. M. Roos, R. Jeroen A. van Moorselaar, Harm H. E. van Melick, Diederik M. Somford, Ton A. Roeleveld, Tjard D. de Haan, Yacov Reisman, Iman J. Schultz, Jan Krijgh and Frans M. J. Debruyne
J. Clin. Med. 2024, 13(19), 5996; https://doi.org/10.3390/jcm13195996 - 8 Oct 2024
Cited by 1 | Viewed by 1209
Abstract
Background: The co-treatment of androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) with the fetal estrogen estetrol (E4) may further inhibit endocrine PCa tumor stimulators. We previously reported the suppression of follicle-stimulating hormone (FSH), total and free testosterone, and prostate-specific antigen by [...] Read more.
Background: The co-treatment of androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) with the fetal estrogen estetrol (E4) may further inhibit endocrine PCa tumor stimulators. We previously reported the suppression of follicle-stimulating hormone (FSH), total and free testosterone, and prostate-specific antigen by ADT+E4. Here, we provide more detailed data on FSH suppression by E4 and present new findings on the effect of ADT+E4 on insulin-like growth factor-1 (IGF-1). Methods: A Phase II, double-blind, randomized, placebo-controlled study (the PCombi study) was conducted in advanced PCa patients treated with ADT. The study assessed the effect of E4 co-treatment with LHRH agonist ADT on tumor stimulators, including FSH and IGF-1. Patients starting ADT were randomized 2:1 to receive either 40 mg E4 (n = 41) or placebo (n = 21) for 24 weeks. Non-parametric analyses were performed on the per-protocol population (PP) and individual changes were visualized. Results: The PP included 57 patients (37 ADT+E4; 20 ADT+placebo). ADT+E4 almost completely suppressed FSH in all patients (98% versus 37%; p < 0.0001). IGF-1 levels decreased by 41% with ADT+E4 versus an increase of 10% with ADT+placebo (p < 0.0001). Conclusions: The almost complete suppression of the tumor stimulator FSH using ADT plus E4 observed in all individual patients in this study, along with the augmented suppression of IGF-1 versus an increase by ADT only, may be clinically relevant and suggest the enhanced anti-cancer treatment efficacy of E4 in addition to the previously reported additional suppression of total and free T and PSA. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 7583 KiB  
Article
S-Allylmercapto-N-Acetylcysteine (ASSNAC) Attenuates Osteoporosis in Ovariectomized (OVX) Mice
by Itay Bleichman, Sahar Hiram-Bab, Yankel Gabet and Naphtali Savion
Antioxidants 2024, 13(4), 474; https://doi.org/10.3390/antiox13040474 - 17 Apr 2024
Viewed by 2190
Abstract
Osteoporosis is a bone-debilitating disease, demonstrating a higher prevalence in post-menopausal women due to estrogen deprivation. One of the main mechanisms underlying menopause-related bone loss is oxidative stress. S-allylmercapto-N-acetylcysteine (ASSNAC) is a nuclear factor erythroid 2-related factor 2 (Nrf2) activator [...] Read more.
Osteoporosis is a bone-debilitating disease, demonstrating a higher prevalence in post-menopausal women due to estrogen deprivation. One of the main mechanisms underlying menopause-related bone loss is oxidative stress. S-allylmercapto-N-acetylcysteine (ASSNAC) is a nuclear factor erythroid 2-related factor 2 (Nrf2) activator and cysteine supplier, previously shown to have anti-oxidation protective effects in cultured cells and animal models. Here, we studied the therapeutic potential of ASSNAC with and without Alendronate in ovariectomized (OVX) female mice. The experimental outcome included (i) femur and L3 lumbar vertebra morphometry via Micro-Computed Tomography (μCT); (ii) bone remodeling (formation vs. resorption); and (iii) oxidative stress markers in bone marrow (BM) cells. Four weeks after OVX, there was a significant bone loss that remained evident after 8 weeks, as demonstrated via µCT in the femur (cortical and trabecular bone compartments) and vertebra (trabecular bone). ASSNAC at a dose of 50 mg/Kg/day prevented bone loss after the four-week treatment but had no significant effect after 8 weeks, while ASSNAC at a dose of 20 mg/Kg/day significantly protected against bone loss after 8 weeks of treatment. Alendronate prevented ovariectomy-induced bone loss, and combining it with ASSNAC further augmented this effect. OVX mice demonstrated high serum levels of both C-terminal cross-linked telopeptides of type I collagen (CTX) (bone resorption) and procollagen I N-terminal propeptide (P1NP) (bone formation) after 2 weeks, and these returned to control levels after 8 weeks. Alendronate, ASSNAC and their combination decreased CTX and increased P1NP. Alendronate induced oxidative stress as reflected by decreased glutathione and increased malondialdehyde (MDA) levels, and combining it with ASSNAC partially attenuated these changes. These results portray the therapeutic potential of ASSNAC for the management of post-menopausal osteoporosis. Furthermore, ASSNAC ameliorates the Alendronate-associated oxidative stress, suggesting its potential to prevent Alendronate side effects as well as improve its bone-protective effect. Full article
Show Figures

Figure 1

15 pages, 1390 KiB  
Article
Immunoprofiles and Oncologic Outcomes of 15 Patients with Androgen Receptor-Positive Salivary Duct Carcinoma
by Emile Gogineni, Blake E. Sells, Khaled Dibs, Sachin R. Jhawar, Catherine T. Haring, Abberly L. Limbach, David J. Konieczkowski, Sung J. Ma, Simeng Zhu, Sujith Baliga, Darrion L. Mitchell, John C. Grecula, Marcelo Bonomi, Priyanka Bhateja, Matthew O. Old, Nolan B. Seim, Stephen Y. Kang, James W. Rocco, Arnab Chakravarti, Dukagjin M. Blakaj and Mauricio E. Gamezadd Show full author list remove Hide full author list
Cancers 2024, 16(6), 1204; https://doi.org/10.3390/cancers16061204 - 19 Mar 2024
Cited by 2 | Viewed by 2282
Abstract
Background: Salivary duct carcinomas (SDC) are a rare and aggressive subtype of salivary gland neoplasm. They can present with distinct immunoprofiles, such as androgen receptor (AR) and HER-2/Neu-positivity. To date, no consensus exists on how to best manage this entity. Methods: All patients [...] Read more.
Background: Salivary duct carcinomas (SDC) are a rare and aggressive subtype of salivary gland neoplasm. They can present with distinct immunoprofiles, such as androgen receptor (AR) and HER-2/Neu-positivity. To date, no consensus exists on how to best manage this entity. Methods: All patients diagnosed with nonmetastatic AR+ SDC of the parotid from 2013 to 2019 treated with curative intent were included. Immunologic tumor profiling was conducted using 24 distinct markers. Kaplan–Meier analyses were used to estimate locoregional recurrence (LRR), distant control, and overall survival (OS). Results: Fifteen patients were included. Nine (60%) patients presented with T4 disease and eight (53%) had positive ipsilateral cervical lymphadenopathy. Ten (67%) patients underwent trimodality therapy, including surgery followed by adjuvant radiation and concurrent systemic therapy. The median follow-up was 5.5 years (interquartile range, 4.8–6.1). The estimated 5-year rates of LRR, distant progression, and OS were 6%, 13%, and 87%, respectively. Conclusion: Despite only including AR+ SDC of the parotid, immunoprofiles, such as expression of HER-2, were highly variable, highlighting the potential to tailor systemic regimens based on individual histologic profiles in the future. Studies with larger patient numbers using tumor-specific molecular profiling and tumor heterogeneity analyses are justified to better understand the biology of these tumors. Molecularly informed treatment approaches, including the potential use of AR- and HER-2/Neu-directed therapies upfront in the definitive setting, may hold future promise to further improve outcomes for these patients. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies in Salivary Gland Tumor)
Show Figures

Figure 1

20 pages, 1731 KiB  
Review
Menopause-Associated Depression: Impact of Oxidative Stress and Neuroinflammation on the Central Nervous System—A Review
by Gengfan Liang, Audrey Siew Foong Kow, Rohana Yusof, Chau Ling Tham, Yu-Cheng Ho and Ming Tatt Lee
Biomedicines 2024, 12(1), 184; https://doi.org/10.3390/biomedicines12010184 - 15 Jan 2024
Cited by 27 | Viewed by 6602
Abstract
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side [...] Read more.
Perimenopausal depression, occurring shortly before or after menopause, is characterized by symptoms such as emotional depression, anxiety, and stress, often accompanied by endocrine dysfunction, particularly hypogonadism and senescence. Current treatments for perimenopausal depression primarily provide symptomatic relief but often come with undesirable side effects. The development of agents targeting the specific pathologies of perimenopausal depression has been relatively slow. The erratic fluctuations in estrogen and progesterone levels during the perimenopausal stage expose women to the risk of developing perimenopausal-associated depression. These hormonal changes trigger the production of proinflammatory mediators and induce oxidative stress, leading to progressive neuronal damage. This review serves as a comprehensive overview of the underlying mechanisms contributing to perimenopausal depression. It aims to shed light on the complex relationship between perimenopausal hormones, neurotransmitters, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression. By summarizing the intricate interplay between hormonal fluctuations, neurotransmitter activity, brain-derived neurotrophic factors, chronic inflammation, oxidative stress, and perimenopausal depression, this review aims to stimulate further research in this field. The hope is that an increased understanding of these mechanisms will pave the way for the development of more effective therapeutic targets, ultimately reducing the risk of depression during the menopausal stage for the betterment of psychological wellbeing. Full article
(This article belongs to the Special Issue Molecular Insights into Depression)
Show Figures

Figure 1

19 pages, 3509 KiB  
Article
Age and 17β-Estradiol (E2) Facilitate Nuclear Export and Argonaute Loading of microRNAs in the Female Brain
by Megan L. Linscott, Yoldas Yildiz, Sarah Flury, Mikayla L. Newby and Toni R. Pak
Non-Coding RNA 2023, 9(6), 74; https://doi.org/10.3390/ncrna9060074 - 6 Dec 2023
Cited by 3 | Viewed by 2718
Abstract
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone [...] Read more.
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone replacement therapy is only effective within a narrow window of time surrounding the menopausal transition. Our previous work identified microRNAs as a potential molecular substrate underlying the change in E2 efficacy associated with menopause in advanced age. Specifically, we showed that E2 regulated a small subset of mature miRNAs in the aging female brain. In this study, we hypothesized that E2 regulates the stability of mature miRNAs by altering their subcellular localization and their association with argonaute proteins. We also tested the hypothesis that the RNA binding protein, hnRNP A1, was an important regulator of mature miR-9-5p expression in neuronal cells. Our results demonstrated that E2 treatment affected miRNA subcellular localization and its association with argonaute proteins differently, depending on the length of time following E2 deprivation (i.e., ovariectomy). We also provide strong evidence that hnRNP A1 regulates the transcription of pri-miR-9 and likely plays a posttranscriptional role in mature miR-9-5p turnover. Taken together, these data have important implications for considering the optimal timing for hormone replacement therapy, which might be less dependent on age and more related to how long treatment is delayed following menopause. Full article
(This article belongs to the Special Issue Non-coding RNA in the USA: Latest Advances and Perspectives)
Show Figures

Figure 1

19 pages, 4734 KiB  
Article
Early Castration in Horses Does Not Impact Osteoarticular Metabolism
by Marion Rouge, Florence Legendre, Razan Elkhatib, Christelle Delalande, Juliette Cognié, Fabrice Reigner, Philippe Barrière, Stefan Deleuze, Vincent Hanoux, Philippe Galéra and Hélène Bouraïma-Lelong
Int. J. Mol. Sci. 2023, 24(23), 16778; https://doi.org/10.3390/ijms242316778 - 26 Nov 2023
Cited by 4 | Viewed by 2557
Abstract
The castration of stallions is traditionally performed after puberty, at around the age of 2 years old. No studies have focused on the effects of early castration on osteoarticular metabolism. Thus, we aimed to compare early castration (3 days after birth) with traditional [...] Read more.
The castration of stallions is traditionally performed after puberty, at around the age of 2 years old. No studies have focused on the effects of early castration on osteoarticular metabolism. Thus, we aimed to compare early castration (3 days after birth) with traditional castration (18 months of age) in horses. Testosterone and estradiol levels were monitored from birth to 33 months in both groups. We quantified the levels of biomarkers of cartilage and bone anabolism (CPII and N-MID) and catabolism (CTX-I and CTX-II), as well as of osteoarthritis (HA and COMP) and inflammation (IL-6 and PGE2). We observed a lack of parallelism between testosterone and estradiol synthesis after birth and during puberty in both groups. The extra-gonadal synthesis of steroids was observed around the 28-month mark, regardless of the castration age. We found the expression of estrogen receptor (ESR1) in cartilage and bone, whereas androgen receptor (AR) expression appeared to be restricted to bone. Nevertheless, with respect to osteoarticular metabolism, steroid hormone deprivation resulting from early castration had no discernable impact on the levels of biomarkers related to bone and cartilage metabolism, nor on those associated with OA and inflammation. Consequently, our research demonstrated that early castration does not disrupt bone and cartilage homeostasis. Full article
(This article belongs to the Special Issue Feature Papers in Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 4952 KiB  
Article
Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats
by Tarfa Albrahim, Raghad Alangry, Raghad Alotaibi, Leen Almandil and Sara Alburikan
Nutrients 2023, 15(19), 4270; https://doi.org/10.3390/nu15194270 - 6 Oct 2023
Cited by 14 | Viewed by 6035
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women’s quality of life. This study set out to investigate the [...] Read more.
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women’s quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone. Full article
(This article belongs to the Special Issue Intermittent Fasting on Human Health and Disease)
Show Figures

Figure 1

16 pages, 2905 KiB  
Article
2-Methoxyestradiol as an Antiproliferative Agent for Long-Term Estrogen-Deprived Breast Cancer Cells
by Masayo Hirao-Suzuki, Koki Kanameda, Masufumi Takiguchi, Narumi Sugihara and Shuso Takeda
Curr. Issues Mol. Biol. 2023, 45(9), 7336-7351; https://doi.org/10.3390/cimb45090464 - 9 Sep 2023
Cited by 5 | Viewed by 2286
Abstract
To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and [...] Read more.
To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and 2-methoxyestradiol (2-MeO-E2), which are microtubule-destabilizing agents and agonists of the G protein-coupled estrogen receptor 1 (GPER1). The expression of GPER1 in LTED cells was low (~0.44-fold), and LTED cells displayed approximately 1.5-fold faster proliferation than MCF-7 cells. Although G-1 induced comparable antiproliferative effects on both MCF-7 and LTED cells (IC50 values of >10 µM), 2-MeO-E2 exerted antiproliferative effects selective for LTED cells with an IC50 value of 0.93 μM (vs. 6.79 μM for MCF-7 cells) and induced G2/M cell cycle arrest. Moreover, we detected higher amounts of β-tubulin proteins in LTED cells than in MCF-7 cells. Among the β-tubulin (TUBB) isotype genes, the highest expression of TUBB2B (~3.2-fold) was detected in LTED cells compared to that in MCF-7 cells. Additionally, siTUBB2B restores 2-MeO-E2-mediated inhibition of LTED cell proliferation. Other microtubule-targeting agents, i.e., paclitaxel, nocodazole, and colchicine, were not selective for LTED cells. Therefore, 2-MeO-E2 can be an antiproliferative agent to suppress LTED cell proliferation. Full article
(This article belongs to the Special Issue Advanced Molecular Solutions for Cancer Therapy)
Show Figures

Figure 1

30 pages, 940 KiB  
Review
Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy
by Sabine Matou-Nasri, Maram Aldawood, Fatimah Alanazi and Abdul Latif Khan
Diagnostics 2023, 13(14), 2390; https://doi.org/10.3390/diagnostics13142390 - 17 Jul 2023
Cited by 14 | Viewed by 3814
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15–20% of all breast cancers [...] Read more.
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15–20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC. Full article
(This article belongs to the Special Issue Advances in Breast Disease: From Screening to Diagnosis and Therapy)
Show Figures

Figure 1

Back to TopTop