Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = episcleral vein cauterization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4051 KiB  
Article
Change in Mechanical Property of Rat Brain Suffering from Chronic High Intraocular Pressure
by Yukai Zeng, Kunya Zhang, Zhengyuan Ma and Xiuqing Qian
Bioengineering 2025, 12(8), 787; https://doi.org/10.3390/bioengineering12080787 - 22 Jul 2025
Viewed by 284
Abstract
Glaucoma is a trans-synaptic neurodegenerative disease, and the pathological increase in intraocular pressure (IOP) is a major risk factor of glaucoma. High IOP alters microstructure and morphologies of the brain tissue. Since mechanical properties of the brain are sensitive to the alteration of [...] Read more.
Glaucoma is a trans-synaptic neurodegenerative disease, and the pathological increase in intraocular pressure (IOP) is a major risk factor of glaucoma. High IOP alters microstructure and morphologies of the brain tissue. Since mechanical properties of the brain are sensitive to the alteration of the tissue microstructure, we investigate how varying durations of chronic elevated IOP alter brain mechanical properties. A chronic high IOP rat model was induced by episcleral vein cauterization with subconjunctival injection of 5-Fluorouracil. At 2, 4 and 8 weeks after induction, indentation tests were performed on the brain slices to measure mechanical properties in the hippocampus, lateral geniculate nucleus and occipital lobe of both hemispheres. Meanwhile, the brain’s microstructure was assessed via F-actin and myelin staining. Compared to the blank control group, the Young’s modulus decreased in all three brain regions in the highIOP experimental groups. F-actin fluorescence intensity and myelin area fraction were reduced in the hippocampus, while β-amyloid levels and tau phosphorylation were elevated in the experimental groups. Our study provides insight into Alzheimer’s disease pathogenesis by demonstrating how chronic high IOP alters the brain’s mechanical properties. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Ophthalmic Diseases)
Show Figures

Figure 1

15 pages, 5451 KiB  
Article
Methylene Blue Reduces Electroretinogram Distortion and Ganglion Cell Death in a Rat Model of Glaucoma
by Ronan Nakamura, Nicolás S. Ciranna, Juan C. Fernández, Rafael Peláez, Álvaro Pérez-Sala, Miriam Bobadilla, Juan J. López-Costa, César F. Loidl, Alfredo Martínez and Manuel Rey-Funes
Biomedicines 2024, 12(9), 1983; https://doi.org/10.3390/biomedicines12091983 - 2 Sep 2024
Cited by 2 | Viewed by 5081
Abstract
Glaucoma is the second leading cause of blindness worldwide and is, in most cases, a consequence of elevated intraocular pressure (IOP), ultimately resulting in the death of retinal ganglion cells (RGCs). Current treatments are mostly focused on normalizing IOP, but we propose the [...] Read more.
Glaucoma is the second leading cause of blindness worldwide and is, in most cases, a consequence of elevated intraocular pressure (IOP), ultimately resulting in the death of retinal ganglion cells (RGCs). Current treatments are mostly focused on normalizing IOP, but we propose the additional use of neuroprotective agents, including methylene blue (MB), to block the loss of RGCs. Wistar rats were subjected to episcleral vein cauterization (EVC) in the left eye while the right eye was sham-operated. One week later, they were divided into two groups, which were injected with either 2.0 mg/kg MB or phosphate-buffered saline (PBS), twice a day, for 7 days. Fifteen days after surgery, rats were tested with scotopic electroretinography (ERG) or pattern electroretinography (PERG). After sacrifice, the number of RGCs and the thickness of the inner retina (IR) were evaluated both in the peripheral and central areas of the retina. Scotopic ERG showed a marked reduction (p < 0.0001) on the a- and b-wave amplitude and oscillatory potential (OP) complexity of the eyes subjected to EVC. These parameters were significantly (p < 0.01) restored by the application of MB. PERG indicated that EVC was responsible for a very significant decrease in N2 amplitude (p < 0.0001) and prolongation of N2 implicit time (p < 0.0001). Treatment with MB significantly restored N2 amplitude (p < 0.0001). In parallel with the ERG results, morphological analysis showed a significant loss of RGCs (p < 0.0001) and IR thickness (p < 0.0001) in both the peripheral and central retinas subjected to EVC, which was significantly prevented (p < 0.0001) by MB treatment. We have shown that MB treatment can be effective in preventing physiological and morphological hallmarks of optic neuropathy in a model of ocular hypertension, which faithfully recapitulates human open-angle glaucoma. Due to its high safety profile, this drug could therefore represent a new pharmacologic strategy to prevent vision loss in glaucoma patients. Full article
Show Figures

Figure 1

31 pages, 68931 KiB  
Review
Stable Gastric Pentadecapeptide BPC 157—Possible Novel Therapy of Glaucoma and Other Ocular Conditions
by Predrag Sikiric, Antonio Kokot, Tamara Kralj, Mirna Zlatar, Sanja Masnec, Ratimir Lazic, Kristina Loncaric, Katarina Oroz, Marko Sablic, Marta Boljesic, Marko Antunovic, Suncana Sikiric, Sanja Strbe, Vasilije Stambolija, Lidija Beketic Oreskovic, Ivana Kavelj, Luka Novosel, Slavica Zubcic, Ivan Krezic, Anita Skrtic, Ivana Jurjevic, Alenka Boban Blagaic, Sven Seiwerth and Mario Staresinicadd Show full author list remove Hide full author list
Pharmaceuticals 2023, 16(7), 1052; https://doi.org/10.3390/ph16071052 - 24 Jul 2023
Cited by 6 | Viewed by 6339
Abstract
Recently, stable gastric pentadecapeptide BPC 157 therapy by activation of collateral pathways counteracted various occlusion/occlusion-like syndromes, vascular, and multiorgan failure, and blood pressure disturbances in rats with permanent major vessel occlusion and similar procedures disabling endothelium function. Thereby, we revealed BPC 157 cytoprotective [...] Read more.
Recently, stable gastric pentadecapeptide BPC 157 therapy by activation of collateral pathways counteracted various occlusion/occlusion-like syndromes, vascular, and multiorgan failure, and blood pressure disturbances in rats with permanent major vessel occlusion and similar procedures disabling endothelium function. Thereby, we revealed BPC 157 cytoprotective therapy with strong vascular rescuing capabilities in glaucoma therapy. With these capabilities, BPC 157 therapy can recover glaucomatous rats, normalize intraocular pressure, maintain retinal integrity, recover pupil function, recover retinal ischemia, and corneal injuries (i.e., maintained transparency after complete corneal abrasion, corneal ulceration, and counteracted dry eye after lacrimal gland removal or corneal insensitivity). The most important point is that in glaucomatous rats (three of four episcleral veins cauterized) with high intraocular pressure, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, nor- mal retinal and choroidal blood vessel presentation, and normal optic nerve presentation. The one episcleral vein rapidly upgraded to accomplish all functions in glaucomatous rats may correspond with occlusion/occlusion-like syndromes of the activated rescuing collateral pathway (azygos vein direct blood flow delivery). Normalized intraocular pressure in glaucomatous rats corresponded to the counteracted intra-cranial (superior sagittal sinus), portal, and caval hypertension, and aortal hypotension in occlusion/occlusion-like syndromes, were all attenuated/eliminated by BPC 157 therapy. Furthermore, given in other eye disturbances (i.e., retinal ischemia), BPC 157 instantly breaks a noxious chain of events, both at an early stage and an already advanced stage. Thus, we further advocate BPC 157 as a therapeutic agent in ocular disease. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

16 pages, 6406 KiB  
Article
Morphological Changes of Glial Lamina Cribrosa of Rats Suffering from Chronic High Intraocular Pressure
by Jingxi Zhang, Yushu Liu, Liu Liu, Lin Li and Xiuqing Qian
Bioengineering 2022, 9(12), 741; https://doi.org/10.3390/bioengineering9120741 - 30 Nov 2022
Cited by 4 | Viewed by 2263
Abstract
Deformations or remodeling of the lamina cribrosa (LC) induced by elevated intraocular pressure (IOP) are associated with optic nerve injury. The quantitative analysis of the morphology changes of the LC will provide the basis for the study of the pathogenesis of glaucoma. After [...] Read more.
Deformations or remodeling of the lamina cribrosa (LC) induced by elevated intraocular pressure (IOP) are associated with optic nerve injury. The quantitative analysis of the morphology changes of the LC will provide the basis for the study of the pathogenesis of glaucoma. After the chronic high-IOP rat model was induced by cauterizing episcleral veins with 5-Fluorouracil subconjunctival injection, the optic nerve head (ONH) cross sections were immunohistochemically stained at 2 w, 4 w, 8 w, and 12 w. Then the sections were imaged by a confocal microscope, and six morphological parameters of the ONH were calculated after the images were processed using Matlab. The results showed that the morphology of the ONH changed with the duration of chronic high IOP. The glial LC pore area fraction, the ratio of glial LC pore area to the glial LC tissue area, first decreased at 2 w and 4 w and then increased to the same level as the control group at 8 w and continued to increase until 12 w. The number and density of nuclei increased significantly at 8 w in the glial LC region. The results might mean the fraction of glial LC beam increased and astrocytes proliferated at the early stage of high IOP. Combined with the images of the ONH, the results showed the glial LC was damaged with the duration of chronic elevated IOP. Full article
(This article belongs to the Special Issue Ophthalmic Engineering)
Show Figures

Graphical abstract

26 pages, 7631 KiB  
Article
Stable Gastric Pentadecapeptide BPC 157 Therapy of Rat Glaucoma
by Tamara Kralj, Antonio Kokot, Mirna Zlatar, Sanja Masnec, Katarina Kasnik Kovac, Marija Milkovic Perisa, Lovorka Batelja Vuletic, Ana Giljanovic, Sanja Strbe, Suncana Sikiric, Slaven Balog, Bojan Sontacchi, Dijana Sontacchi, Matko Buljan, Eva Lovric, Alenka Boban Blagaic, Anita Skrtic, Sven Seiwerth and Predrag Sikiric
Biomedicines 2022, 10(1), 89; https://doi.org/10.3390/biomedicines10010089 - 31 Dec 2021
Cited by 23 | Viewed by 4365
Abstract
Cauterization of three episcleral veins (open-angle glaucoma model) induces venous congestion and increases intraocular pressure in rats. If not upgraded, one episcleral vein is regularly unable to acquire and take over the whole function, and glaucoma-like features persist. Recently, the rapid upgrading of [...] Read more.
Cauterization of three episcleral veins (open-angle glaucoma model) induces venous congestion and increases intraocular pressure in rats. If not upgraded, one episcleral vein is regularly unable to acquire and take over the whole function, and glaucoma-like features persist. Recently, the rapid upgrading of the collateral pathways by a stable gastric pentadecapeptide BPC 157 has cured many severe syndromes induced by permanent occlusion of major vessels, veins and/or arteries, peripherally and centrally. In a six-week study, medication was given prophylactically (immediately before glaucoma surgery, i.e., three episcleral veins cauterization) or as curative treatment (starting at 24 h after glaucoma surgery). The daily regimen of BPC 157 (0.4 µg/eye, 0.4 ng/eye; 10 µg/kg, 10 ng/kg) was administered locally as drops in each eye, intraperitoneally (last application at 24 h before sacrifice) or per-orally in drinking water (0.16 µg/mL, 0.16 ng/mL, 12 mL/rat until the sacrifice, first application being intragastric). Consequently, all BPC 157 regimens immediately normalized intraocular pressure. BPC 157-treated rats exhibited normal pupil diameter, microscopically well-preserved ganglion cells and optic nerve presentation, normal fundus presentation, normal retinal and choroidal blood vessel presentation and normal optic nerve presentation. As leading symptoms, increased intraocular pressure and mydriasis, as well as degeneration of retinal ganglion cells, optic nerve head excavation and reduction in optic nerve thickness, generalized severe irregularity of retinal vessels, faint presentation of choroidal vessels and severe optic nerve disc atrophy were all counteracted. In conclusion, we claim that the reversal of the episcleral veins cauterization glaucoma appeared as a consequence of the BPC 157 therapy of the vessel occlusion-induced perilous syndrome. Full article
(This article belongs to the Special Issue Frontiers in Pentadecapeptide BPC 157)
Show Figures

Figure 1

14 pages, 3773 KiB  
Article
The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model
by Fabian Anders, Aiwei Liu, Carolina Mann, Julia Teister, Jasmin Lauzi, Solon Thanos, Franz H. Grus, Norbert Pfeiffer and Verena Prokosch
Int. J. Mol. Sci. 2017, 18(11), 2418; https://doi.org/10.3390/ijms18112418 - 14 Nov 2017
Cited by 29 | Viewed by 5711
Abstract
Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed [...] Read more.
Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP), followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced by episcleral vein cauterization resulted in a considerable impairment of the RGCs and the retinal nerve fiber layer. An intravitreal injection of α-crystallin B at the time of the IOP increase was able to rescue the RGCs, as measured in a functional photopic electroretinogram, retinal nerve fiber layer thickness, and RGC counts. Mass-spectrometry-based proteomics and antibody-microarray measurements indicated that a α-crystallin injection distinctly up-regulated all of the subclasses (α, β, and γ) of the crystallin protein family. The creation of an interactive protein network revealed clear correlations between individual proteins, which showed a regulatory shift resulting from the crystallin injection. The neuroprotective properties of α-crystallin B further demonstrate the potential importance of crystallin proteins in developing therapeutic options for glaucoma. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2017)
Show Figures

Graphical abstract

Back to TopTop