Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = environmentally destructive behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 18754 KiB  
Article
Integrated Documentation and Non-Destructive Surface Characterization of Ancient Egyptian Sandstone Blocks at Karnak Temples (Luxor, Egypt)
by Abdelrhman Fahmy, Salvador Domínguez-Bella, Ana Durante-Macías, Fabiola Martínez-Viñas and Eduardo Molina-Piernas
Heritage 2025, 8(8), 320; https://doi.org/10.3390/heritage8080320 - 11 Aug 2025
Viewed by 333
Abstract
The Karnak Temples are considered one of Egypt’s most significant archaeological sites, dating back to the Middle Kingdom (c. 2000–1700 BC) and were continuously expanded until the Ptolemaic period (305–30 BC). As the second most visited UNESCO World Heritage archaeological site in Egypt [...] Read more.
The Karnak Temples are considered one of Egypt’s most significant archaeological sites, dating back to the Middle Kingdom (c. 2000–1700 BC) and were continuously expanded until the Ptolemaic period (305–30 BC). As the second most visited UNESCO World Heritage archaeological site in Egypt after the Giza Pyramids, Karnak faces severe deterioration processes due to prolonged exposure to environmental impacts, mechanical damage, and historical interventions. This study employs a multidisciplinary approach integrating non-destructive testing (NDT) methods to assess the physical and mechanical condition and degradation mechanisms of scattered sandstone blocks at the site. Advanced documentation techniques, including Reflectance Transformation Imaging (RTI), photogrammetry, and Infrared Thermography (IRT), were used to analyze surface morphology, thermal stress effects, and weathering patterns. Ultrasonic Pulse Velocity (UPV) testing provided internal structural assessments, while spectral and gloss analysis quantified chromatic alterations and surface roughness. Additionally, the Karsten Tube test determined the water absorption behavior of the sandstone, highlighting variations in porosity and susceptibility to salt crystallization. In this sense, the results indicate that climatic factors such as extreme temperature fluctuations, wind erosion, and groundwater infiltration contributed to sandstone deterioration. Thermal cycling leads to microcracking and granular disintegration, while high capillary water absorption accelerates chemical weathering processes. UPV analyses showed substantial internal decay, with low-velocity zones correlating with fractures and differential cementation loss. Finally, an interventive conservation plan was proposed. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Viewed by 525
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 868
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

42 pages, 473 KiB  
Review
Non-Destructive Testing and Evaluation of Hybrid and Advanced Structures: A Comprehensive Review of Methods, Applications, and Emerging Trends
by Farima Abdollahi-Mamoudan, Clemente Ibarra-Castanedo and Xavier P. V. Maldague
Sensors 2025, 25(12), 3635; https://doi.org/10.3390/s25123635 - 10 Jun 2025
Cited by 1 | Viewed by 1917
Abstract
Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, [...] Read more.
Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, fiber–metal laminates, sandwich composites, and functionally graded materials, traditional NDT techniques face growing limitations in sensitivity, adaptability, and diagnostic reliability. This comprehensive review presents a multi-dimensional classification of NDT/NDE methods, structured by physical principles, functional objectives, and application domains. Special attention is given to hybrid and multi-material systems, which exhibit anisotropic behavior, interfacial complexity, and heterogeneous defect mechanisms that challenge conventional inspection. Alongside established techniques like ultrasonic testing, radiography, infrared thermography, and acoustic emission, the review explores emerging modalities such as capacitive sensing, electromechanical impedance, and AI-enhanced platforms that are driving the future of intelligent diagnostics. By synthesizing insights from the recent literature, the paper evaluates comparative performance metrics (e.g., sensitivity, resolution, adaptability); highlights integration strategies for embedded monitoring and multimodal sensing systems; and addresses challenges related to environmental sensitivity, data interpretation, and standardization. The transformative role of NDE 4.0 in enabling automated, real-time, and predictive structural assessment is also discussed. This review serves as a valuable reference for researchers and practitioners developing next-generation NDT/NDE solutions for hybrid and high-performance structures. Full article
(This article belongs to the Special Issue Digital Image Processing and Sensing Technologies—Second Edition)
29 pages, 5998 KiB  
Article
Stability of Slope and Concrete Structure Under Cyclic Load Coupling and Its Application in Ecological Risk Prevention and Control
by Shicong Ren, Jun Wang, Nian Chen and Tingyao Wu
Sustainability 2025, 17(10), 4260; https://doi.org/10.3390/su17104260 - 8 May 2025
Viewed by 546
Abstract
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of [...] Read more.
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of model tests and theories, the cumulative effect of circulating micro-seismic waves on the internal damage of slopes was revealed. This research finds that the coupling of micro-vibration stress and static stress significantly intensifies the stress concentration on the slope, promotes the development of potential sliding surfaces and the extension of joints, and provides a scientific basis for the prediction of landslide disasters. This helps protect mountain ecosystems and reduce soil erosion and vegetation destruction. The number of cyclic loads has a power function attenuation relationship with the compressive strength of concrete. After 1200 cycles, the strength drops to 20.5 MPa (loss rate 48.8%), and the number of cracks increases from 2.7 per mm3 to 34.7 per mm3 (an increase of 11.8 times). Damage evolution is divided into three stages: linear growth, accelerated expansion, and critical failure. The influence of load amplitude on the number of cracks shows a threshold effect. A high amplitude (>0.5 g) significantly stimulates the propagation of intergranular cracks in the mortar matrix, and the proportion of intergranular cracks increases from 12% to 65%. Grey correlation analysis shows that the number of cycles dominates the strength attenuation (correlation degree 0.87), and the load amplitude regulates the crack initiation efficiency more significantly (correlation degree 0.91). These research results can optimize the design of concrete structures, enhance the durability of the project, and indirectly reduce the resource consumption and environmental burden caused by structural damage. Both studies are supported by numerical simulation and experimental verification, providing theoretical support for disaster prevention and control and sustainable engineering practices and contributing to ecological environment risk management and the development of green building materials. Full article
Show Figures

Figure 1

24 pages, 5754 KiB  
Article
Mechanical and Ultrasonic Evaluation of Epoxy-Based Polymer Mortar Reinforced with Discrete Fibers
by Eyad Alsuhaibani
Polymers 2025, 17(9), 1250; https://doi.org/10.3390/polym17091250 - 4 May 2025
Cited by 1 | Viewed by 563
Abstract
This research investigates the ultrasonic pulse velocity (UPV) and mechanical performance of epoxy-based polymer mortar (PM) reinforced with discrete fiber types to enhance structural behavior and promote sustainable construction practices. Four fiber types, polypropylene (PPF), natural date palm leaf fiber (DPL), glass fiber [...] Read more.
This research investigates the ultrasonic pulse velocity (UPV) and mechanical performance of epoxy-based polymer mortar (PM) reinforced with discrete fiber types to enhance structural behavior and promote sustainable construction practices. Four fiber types, polypropylene (PPF), natural date palm leaf fiber (DPL), glass fiber (GF), and carbon fiber (CF), were incorporated at varying volume fractions (0.5%, 1.0%, and 1.5%) into PM matrices. A total of thirteen mixtures, including a fiber-free control, were prepared. UPV testing was conducted prior to mechanical testing to evaluate internal quality and homogeneity, followed by compressive and flexural strength tests to assess structural performance. The results demonstrated that fiber type and dosage significantly influenced fiber-reinforced PM (FRPM) behavior. UPV values showed strong positive correlations with compressive strength for PPF, DPL, and CF, confirming UPV’s role as a non-destructive quality indicator. GF at 0.5% yielded the highest compressive strength (54.4 MPa), while CF and GF at 1.5% provided the greatest flexural enhancements (15 MPa), indicating improved ductility and energy absorption. Quadratic regression models were developed to predict strength responses as functions of fiber dosage. Although statistical significance was not achieved due to limited sample size, models for PPF and CF exhibited strong predictive reliability. Natural fibers such as DPL demonstrated moderate performance while offering environmental advantages through local renewability and low embodied energy. The study concludes that low fiber dosages, particularly 0.5%, enhance mechanical performance and material efficiency in FRPMs. The findings underscore the potential of FRPM as a durable and sustainable alternative to traditional cementitious materials. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

9 pages, 1954 KiB  
Communication
Real-Time and Sustainable Termite Management: Application of Intelligent Monitoring Systems in Reservoirs
by Ming Wang, Peidong Jiang, Fengyan Wu, Lai Jiang and Tengteng Che
Appl. Sci. 2025, 15(6), 3303; https://doi.org/10.3390/app15063303 - 18 Mar 2025
Cited by 1 | Viewed by 685
Abstract
Termites pose a threat to water conservancy infrastructure due to their concealed, recurring, and long-term destructive behaviors. Consequently, implementing termite monitoring in critical hydrological facilities—such as reservoirs—is essential for timely prevention and control. Owing to its real-time efficiency, environmental sustainability, and overall effectiveness, [...] Read more.
Termites pose a threat to water conservancy infrastructure due to their concealed, recurring, and long-term destructive behaviors. Consequently, implementing termite monitoring in critical hydrological facilities—such as reservoirs—is essential for timely prevention and control. Owing to its real-time efficiency, environmental sustainability, and overall effectiveness, the intelligent termite monitoring system has gradually emerged as a pivotal strategy for termite management. This paper systematically expounds upon the fundamental principles, overarching architecture, and key features of the current intelligent termite monitoring technology in China. Drawing on its practical application in the Suokoutan Reservoir, we detail the specific implementation procedures and examine the corresponding outcomes. Furthermore, an in-depth analysis of the system’s prospective development is presented, providing feasible references and scientific guidance for advancing termite monitoring, early warning, and control in water conservancy projects. Full article
Show Figures

Figure 1

12 pages, 1782 KiB  
Article
Research on Soil Inorganic Nitrogen Detection Technology Based on Dielectric Response
by Zhenyu Jia, Xuan Han, Ri Hu, Jiangyang Yu, Xiaoqing Yan and Jinghui Xu
Sustainability 2025, 17(6), 2491; https://doi.org/10.3390/su17062491 - 12 Mar 2025
Cited by 1 | Viewed by 729
Abstract
Efficient monitoring of soil inorganic nitrogen is crucial for precision agriculture fertilization and ecological environmental protection. Traditional detection methods are complex and challenging for real-time in situ measurements. This study proposes an innovative approach based on dielectric response characteristics, enabling non-destructive and rapid [...] Read more.
Efficient monitoring of soil inorganic nitrogen is crucial for precision agriculture fertilization and ecological environmental protection. Traditional detection methods are complex and challenging for real-time in situ measurements. This study proposes an innovative approach based on dielectric response characteristics, enabling non-destructive and rapid detection by analyzing soil polarization behavior in an electromagnetic field. Using a vector network analyzer (E5071-C), we systematically measured the complex dielectric spectra of red soil and yellow clay loam across a wide frequency range from 10 MHz to 4.5 GHz. Coupled with water–nitrogen interaction experiments (volume water content: 0.05–0.25 cm3/cm3; nitrogen concentration: 0–0.2 mol/L), we established a high-frequency–low-frequency collaborative detection model. The study found that at the 3.8 GHz high-frequency band, the interface polarization weakening effect allows for the precise measurement of soil water content (R2 = 0.82; RMSE = 0.030 cm3/cm3). In the 100–200 MHz low-frequency band, based on ion migration dynamics, we successfully identified characteristic sensitive frequency bands for NH4+ (136–159 MHz) and NO3 (97–129 MHz). Notably, at 127 MHz, the water–nitrogen coupling model predicted inorganic nitrogen content with a determination coefficient of 0.721. This method effectively overcomes the water interference issue inherent in traditional single-frequency dielectric methods through a dual-frequency decoupling mechanism. The findings lay a theoretical foundation for developing in situ sensors for farmland. Real-time monitoring can significantly improve nitrogen fertilizer utilization efficiency and reduce environmental pollution, offering substantial application value for advancing precision agriculture and sustainable development. Full article
Show Figures

Figure 1

17 pages, 2616 KiB  
Article
Extended Cloud–TODIM Method for Multiple-Attribute Decision-Making Problems in Risk Reduction Schemes: Application in the Tailings Storage Facility Failure
by Yusong Zhao and Congcong Chen
Appl. Sci. 2025, 15(4), 2091; https://doi.org/10.3390/app15042091 - 17 Feb 2025
Viewed by 408
Abstract
Various tailings storage facility (TSF) failures have caused catastrophic consequences, such as life and property losses and environmental destruction. It is crucial to select the optimal risk reduction scheme (RRS) to guarantee the safety and stability of the TSF. Decision-making problems in RRS [...] Read more.
Various tailings storage facility (TSF) failures have caused catastrophic consequences, such as life and property losses and environmental destruction. It is crucial to select the optimal risk reduction scheme (RRS) to guarantee the safety and stability of the TSF. Decision-making problems in RRS selection for TSF failure are multiple-attribute decision-making problems. During the RRS selection process, the psychological behavior of the decision makers should be considered. To solve such problems, the cloud–TODIM (abbreviation for interactive and multi-attribute decision-making in Portuguese) method is proposed for RRS selection in this paper. Firstly, the quantitative evaluation information is qualified and converted into clouds based on the cloud model, in which the characteristics of fuzziness, uncertainty, and randomness can be described. Secondly, an improved TODIM method is proposed to select the optimal RRS. Furthermore, a TSF is employed as a case study to examine the superiority of the proposed method. Finally, the sensitivity of the loss aversion coefficient θ, which reflects the attitudes of the decision makers (DMs) to the loss, is analyzed and a comparative analysis is developed therefore illustrating the competitiveness of the multiple-attribute decision-making of the proposed method. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in the Mining Industry)
Show Figures

Figure 1

19 pages, 57857 KiB  
Article
The Impact of Differential Settlement on Sloshing Dynamics in Coastal Zone Storage Tanks Under External Excitation: Implications for Sustainable Development
by Heng Jin, Jintao Lu, Yi Liu, Jianmin Shen, Fashui Zhang, Chenhao Zhu and Shu Li
Sustainability 2025, 17(3), 1029; https://doi.org/10.3390/su17031029 - 27 Jan 2025
Viewed by 943
Abstract
Large storage tanks situated in coastal areas are vulnerable to environmental hazards, with earthquakes being one of the most destructive forces threatening their structural safety. Additionally, differential settlement can significantly alter conditions in the tank, including the inclination, thereby changing the direction of [...] Read more.
Large storage tanks situated in coastal areas are vulnerable to environmental hazards, with earthquakes being one of the most destructive forces threatening their structural safety. Additionally, differential settlement can significantly alter conditions in the tank, including the inclination, thereby changing the direction of external applied excitation forces and affecting the liquid sloshing response. To investigate the coupled effects of structural settlement and external excitation, model tests were conducted in series to analyze liquid sloshing behavior in a tilted tank subjected to harmonic excitation. The results revealed that the liquid response under combined environmental loads displayed distinct characteristics compared with that under single excitation. While the inclination angle had minimal influence during the unstable sloshing stage, it became crucial during the stable stage, particularly for third-order resonant responses, leading to intensified sloshing. More specifically, as the tilt angle of the storage tank from 0° to 8°, the steady-state wave height at third-order resonance increased by approximately 69%. This highlights the amplified risks to the structural stability and safety posed by differential settlement. Furthermore, variations in steady-state wave heights due to differential settlement conditions were investigated. The water level elevation along the tank walls varies as the inclination angles increase, which leads to potential risks to the stability of liquid storage under forced motion, especially under symmetric structural designs, and increases the likelihood of structural instability, oil spills, and other coastal disasters. These results provide valuable insights into the safety risks and sustainable utilization of coastal infrastructure, serving a basis for assessing and mitigating the risks associated with structural settlement and seismic excitations. Full article
(This article belongs to the Special Issue Coastal Management and Marine Environmental Sustainability)
Show Figures

Figure 1

19 pages, 3655 KiB  
Review
Interactions Between Nanoparticles and Tomato Plants: Influencing Host Physiology and the Tomato Leafminer’s Molecular Response
by Inzamam Ul Haq, Xiangyun Cai, Habib Ali, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Moazam Hyder and Youming Hou
Nanomaterials 2024, 14(22), 1788; https://doi.org/10.3390/nano14221788 - 7 Nov 2024
Cited by 5 | Viewed by 2495
Abstract
Tomatoes are a crucial global crop, impacting economies and livelihoods worldwide. However, pests like the tomato leafminer (Tuta absoluta) significantly reduce their yield potential. Nanoparticles come as a solution to this context, promising innovative strategies for the protection of plants from [...] Read more.
Tomatoes are a crucial global crop, impacting economies and livelihoods worldwide. However, pests like the tomato leafminer (Tuta absoluta) significantly reduce their yield potential. Nanoparticles come as a solution to this context, promising innovative strategies for the protection of plants from pest infestation and management. Nanoparticles have shown great potential to improve tomato plant resistance against pests and diseases because of their unique properties. They enhance plant physiological processes like photosynthesis and nutrient uptake while activating defense-related molecular pathways. Nanoparticles also directly impact the life cycle and behavioral patterns of pests such as the tomato leafminer, reducing their destructive nature. The dual benefits of nanoparticles for enhancing plants’ health and managing pests effectively provide a two-way innovative approach in agriculture. Gains made with such technology not only include increasing crop productivity and reducing crop losses but also reducing the heavy dependence on chemical pesticides, many of which have been attributed to environmental hazards. The current study illustrates the broader implications of nanoparticle use in agriculture, which is a sustainable pathway to increase crop resilience and productivity while reducing the impact of pests. Such novel approaches underline the need for continued interdisciplinary research to exploit the potential of nanotechnology in sustainable agricultural practices fully. Full article
(This article belongs to the Special Issue Interplay between Nanomaterials and Plants)
Show Figures

Figure 1

19 pages, 2029 KiB  
Review
Bat Ecology and Microbiome of the Gut: A Narrative Review of Associated Potentials in Emerging and Zoonotic Diseases
by Emanuela Bazzoni, Carla Cacciotto, Rosanna Zobba, Marco Pittau, Vito Martella and Alberto Alberti
Animals 2024, 14(20), 3043; https://doi.org/10.3390/ani14203043 - 21 Oct 2024
Cited by 4 | Viewed by 3658
Abstract
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but [...] Read more.
In this review, we tentatively tried to connect the most recent findings on the bat microbiome and to investigate on their microbial communities, that may vary even in conspecific hosts and are influenced by host physiology, feeding behavior and diet, social interactions, but also by habitat diversity and climate change. From a conservation perspective, understanding the potentially negative and indirect effects of habitat destruction on animal microbiota can also play a crucial role in the conservation and management of the host itself. According to the One Health concept, which recognizes an interdependence between humans, animals, and the environment, bat microbiota represents an indicator of host and environmental health, besides allowing for evaluation of the risk of emerging infectious diseases. We noticed that a growing number of studies suggest that animal microbiota may respond in various ways to changes in land use, particularly when such changes lead to altered or deficient food resources. We have highlighted that the current literature is strongly focused on the initial phase of investigating the microbial communities found in Chiroptera from various habitats. However, there are gaps in effectively assessing the impacts of pathogens and microbial communities in general in animal conservation, veterinary, and public health. A deeper understanding of bat microbiomes is paramount to the implementation of correct habitat and host management and to the development of effective surveillance protocols worldwide. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

11 pages, 3538 KiB  
Communication
Inspection of Semi-Elliptical Defects in a Steel Pipe Using the Metal Magnetic Memory Method
by J. Jesús Villegas-Saucillo, Jose Javier Diaz-Carmona, Juan Prado-Olivares, Monserrat Sofia López-Cornejo, Ernesto A. Elvira-Hernández, Carlos A. Cerón-Álvarez and Agustín L. Herrera-May
Appl. Sci. 2024, 14(12), 5308; https://doi.org/10.3390/app14125308 - 19 Jun 2024
Cited by 1 | Viewed by 1360
Abstract
Ferromagnetic pipes are widely used for fluid transportation in various industries. The failure of these ferromagnetic pipes due to surface defects can generate industrial accidents, economic losses, and environmental pollution. Non-destructive testing techniques are required to detect these surface defects. An alternative is [...] Read more.
Ferromagnetic pipes are widely used for fluid transportation in various industries. The failure of these ferromagnetic pipes due to surface defects can generate industrial accidents, economic losses, and environmental pollution. Non-destructive testing techniques are required to detect these surface defects. An alternative is the metal magnetic memory (MMM) method, which can be employed to detect surface flaws in ferromagnetic structures. Based on this method, we present an analysis of experimental results of the magnetic field variations around five different surface semi-elliptical defects of an ASTM A36 steel pipe. A measurement system of MMM signals is implemented with a rotatory mechanism, a magnetoresistive sensor, a data processing unit, and a control digital unit. The MMM method does not require expensive equipment or special treatment of the ferromagnetic structures. In order to research a potential relationship between the defect sample size and the measured MMM signals, variable defect dimensions are experimentally considered. According to these results, the shape and magnitude of the normal and tangential MMM signals are altered by the superficial semi-elliptical defects. In particular, the maximum and mean tangential components and the maximum and minimum normal components are related to the defect dimensions. The proposed measurement system can be used to study the behavior of magnetic field variations around surface defects of ferromagnetic pipes. This system can be adapted to measure the position and damage level of small defects on the surface of ferromagnetic pipes. Full article
(This article belongs to the Special Issue Advances and Applications of Nondestructive Testing)
Show Figures

Figure 1

20 pages, 3344 KiB  
Article
Rheological Properties of Silica-Fume-Modified Bioasphalt and Road Performance of Mixtures
by Gui Hou, Yanhua Xue, Zhe Li and Weiwei Lu
Materials 2024, 17(9), 2090; https://doi.org/10.3390/ma17092090 - 29 Apr 2024
Cited by 2 | Viewed by 1116
Abstract
The objective of this research is to enhance the high-temperature antirutting and antiaging characteristics of bioasphalt. In this study, silica fume (SF) was selected to modify bioasphalt. The dosage of bio-oil in bioasphalt was 5%, and the dosage of SF was 2%, 4%, [...] Read more.
The objective of this research is to enhance the high-temperature antirutting and antiaging characteristics of bioasphalt. In this study, silica fume (SF) was selected to modify bioasphalt. The dosage of bio-oil in bioasphalt was 5%, and the dosage of SF was 2%, 4%, 6%, 8%, and 10% of bioasphalt. The high- and low-temperature characteristics, aging resistance, and temperature sensitivity of Bio + SF were evaluated by temperature sweep (TS), the multiple stress creep recovery (MSCR) test, the bending beam rheology (BBR) test, and the viscosity test. Meanwhile, the road behavior of the Bio + SF mixture was evaluated using the rutting test, low-temperature bending beam test, freeze–thaw splitting test, and fatigue test. The experimental results showed that the dosage of SF could enhance the high-temperature rutting resistance, aging resistance, and temperature stability of bioasphalt. The higher the dosage of SF, the more significant the enhancement effect. However, incorporating SF weakened bioasphalt’s low-temperature cracking resistance properties. When the SF dosage was less than 8%, the low-temperature cracking resistance of Bio + SF was still superior to that of matrix asphalt. Compared with matrix asphalt mixtures, the dynamic stability, destructive strain, freeze–thaw splitting strength ratio, and fatigue life of 5%Bio + 8%SF mixtures increased by 38.4%, 49.1%, 5.9%, and 68.9%, respectively. This study demonstrates that the development of SF-modified bioasphalt could meet the technical requirements of highway engineering. Using SF and bio-oil could decrease the consumption of natural resources and positively reduce environmental pollution. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials II)
Show Figures

Figure 1

20 pages, 4686 KiB  
Article
Temporal Dynamics of Fungal Communities in Alkali-Treated Round Bamboo Deterioration under Natural Weathering
by Shuaibo Han, Xiaojiao An, Xiaolong He, Xin Ren, John Sichone, Xinxing Wu, Yan Zhang, Hui Wang and Fangli Sun
Microorganisms 2024, 12(5), 858; https://doi.org/10.3390/microorganisms12050858 - 25 Apr 2024
Cited by 1 | Viewed by 1605
Abstract
Microbes naturally inhabit bamboo-based materials in outdoor environments, sequentially contributing to their deterioration. Fungi play a significant role in deterioration, especially in environments with abundant water and favorable temperatures. Alkali treatment is often employed in the pretreatment of round bamboo to change its [...] Read more.
Microbes naturally inhabit bamboo-based materials in outdoor environments, sequentially contributing to their deterioration. Fungi play a significant role in deterioration, especially in environments with abundant water and favorable temperatures. Alkali treatment is often employed in the pretreatment of round bamboo to change its natural elastic and aesthetic behaviors. However, little research has investigated the structure and dynamics of fungal communities on alkali-treated round bamboo during natural deterioration. In this work, high-throughput sequencing and multiple characterization methods were used to disclose the fungal community succession and characteristic alterations of alkali-treated round bamboo in both roofed and unroofed habitats throughout a 13-week deterioration period. In total, 192 fungal amplicon sequence variants (ASVs) from six phyla were identified. The fungal community richness of roofed bamboo samples declined, whereas that of unroofed bamboo samples increased during deterioration. The phyla Ascomycota and Basidiomycota exhibited dominance during the entire deterioration process in two distinct environments, and the relative abundance of them combined was more than 99%. A distinct shift in fungal communities from Basidiomycota dominant in the early stage to Ascomycota dominant in the late stage was observed, which may be attributed to the increase of moisture and temperature during succession and the effect of alkali treatment. Among all environmental factors, temperature contributed most to the variation in the fungal community. The surface of round bamboo underwent continuous destruction from fungi and environmental factors. The total amount of cell wall components in bamboo epidermis in both roofed and unroofed conditions presented a descending trend. The content of hemicellulose declined sharply by 8.3% and 11.1% under roofed and unroofed environments after 9 weeks of deterioration. In addition, the contact angle was reduced throughout the deterioration process in both roofed and unroofed samples, which might be attributed to wax layer removal and lignin degradation. This study provides theoretical support for the protection of round bamboo under natural weathering. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

Back to TopTop