Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = energycane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1863 KiB  
Article
Effect of Energycane Integration on Ground-Dwelling Arthropod Biodiversity in a Sugarcane-Sweet Corn Cropping System
by Amandeep Sahil Sharma, Ricardo A. Lesmes-Vesga, Simranjot Kaur, Hardeep Singh and Hardev Singh Sandhu
Agronomy 2025, 15(7), 1685; https://doi.org/10.3390/agronomy15071685 - 12 Jul 2025
Viewed by 216
Abstract
Integrating bioenergy crops into existing agricultural systems may influence soil biodiversity, yet evidence remains limited for second-generation bioenergy crops such as energycane. This study examined the impact of energycane integration on soil arthropod communities in the Everglades Agricultural Area, Florida, compared to traditional [...] Read more.
Integrating bioenergy crops into existing agricultural systems may influence soil biodiversity, yet evidence remains limited for second-generation bioenergy crops such as energycane. This study examined the impact of energycane integration on soil arthropod communities in the Everglades Agricultural Area, Florida, compared to traditional sugarcane and sweetcorn cropping systems. Over two crop cycles (plant cane and first ratoon), soil arthropod abundance and diversity were assessed using pitfall traps. Energycane and sugarcane, both perennial crops, showed no significant differences in order richness or Shannon diversity. Similarly, when energycane was compared with sugarcane and sweetcorn (during the first sampling), it had similar arthropod abundance. However, sweetcorn remained fallow in the second and third samplings, attracting arthropods like fire ants and earwigs, particularly due to pigweed. Diversity metrics based on Hill numbers revealed a decline in the effective abundance of ground-dwelling arthropods with increasing diversity order, influenced by differences in sampling duration. Importantly, no previous studies have been found that have reported on the effects of energycane integration into the existing cropping system on soil arthropod biodiversity. These findings highlight that energycane supports biodiversity levels comparable to sugarcane cropping systems with no negative impacts on soil arthropod abundance. This study underscores the need to consider soil biodiversity impacts when evaluating sustainable bioenergy crop transitions and the potential ecological trade-offs of perennial cropping systems. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

24 pages, 8179 KiB  
Article
Ground-Active Arthropod Diversity Under Energycane and Biomass Sorghum Production
by Yubin Yang, Tanumoy Bera, Hamid Araji, Fugen Dou, Lloyd T. Wilson, William L. Rooney, Jesse I. Morrison, Brian S. Baldwin, Joseph E. Knoll, John L. Jifon, Alan L. Wright, Dennis C. Odero, Hardev S. Sandhu, Anna L. Hale, Himaya P. Mula-Michel and Jing Wang
Insects 2025, 16(5), 442; https://doi.org/10.3390/insects16050442 - 23 Apr 2025
Viewed by 524
Abstract
Energycane and biomass sorghum are two of the most promising cellulosic energy crops in the southeastern US. Research on these two energy crops has focused mainly on biomass production, and there is a lack of knowledge on their ability to promote biodiversity and [...] Read more.
Energycane and biomass sorghum are two of the most promising cellulosic energy crops in the southeastern US. Research on these two energy crops has focused mainly on biomass production, and there is a lack of knowledge on their ability to promote biodiversity and ecosystem services. This paper presents results from a comprehensive study on ground-active arthropod diversity in seven sites across five states in the southeastern US (Florida, Georgia, Louisiana, Mississippi, and Texas). Pitfall traps were deployed four times during each crop season for energycane, biomass sorghum, and a local reference conventional crop from 2020 to 2022. Arthropod abundance (individuals/(trap × day)) values were 4.9 ± 0.46, 3.7 ± 0.18, and 2.6 ± 0.16 (mean ± stderr) for conventional crops, biomass sorghum, and energycane, respectively, with a significant difference found only between conventional crops and energycane. Individuals were identified to arthropod orders, and Hill’s diversity indices were calculated based on the number of individuals in each arthropod order instead of the number of individuals in each arthropod species. Order-based arthropod richness values were 5.3, 5.2, and 4.8 for biomass sorghum, conventional crops, and energycane, with significant difference found only between biomass sorghum and energycane. There was no significant difference in the order-based Shannon diversity and Simpson diversity between the three crop types. The effective number of arthropod orders for the two energy crops decreased from 5.0 to 3.4 to 2.9 with increasing order of diversity from arthropod richness to Shannon diversity to Simpson diversity. The explained variability by environmental factors also decreased with increasing Hill’s order of diversity. The results from this study indicate no significant advantage in order-based arthropod diversity in growing biomass sorghum and energycane. This research fills a critical knowledge gap in understanding the impacts of cellulosic energy crop production on biodiversity and ecosystem services. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

20 pages, 4319 KiB  
Article
Reserve Technique in Integrating Large Sustainable Energy Sources: A Case Study of the Tunisian Grid
by Nouha Mansouri, Abderezak Lashab, Majid Ali, Chokri Bouchoucha, Josep Guerrero and Juan Vasquez
Sustainability 2024, 16(23), 10791; https://doi.org/10.3390/su162310791 - 9 Dec 2024
Cited by 1 | Viewed by 2426
Abstract
The increasing integration of sustainable energy sources, such as wind and solar power, into the national electricity grid presents significant challenges in terms of frequency control and grid stability. Additionally, the imbalance between electricity supply and demand introduces dynamic frequency variations. However, according [...] Read more.
The increasing integration of sustainable energy sources, such as wind and solar power, into the national electricity grid presents significant challenges in terms of frequency control and grid stability. Additionally, the imbalance between electricity supply and demand introduces dynamic frequency variations. However, according to the literature, the impact of high penetration of renewable energy sources on the Tunisian grid has not been extensively analyzed using power system simulator for engineering (PSS/E). This research paper explores how the primary reserve technique participates to maintain frequency within acceptable ranges in the Tunisian electrical grid. Individual generators contribute to the total power output, thereby influencing frequency deviation. The primary frequency control action by each generator is proportional to its frequency deviation and inversely proportional to its governing drop, which measures the generator’s sensitivity to frequency changes. This paper analyzes frequency stability in the Tunisian grid under scenarios with and without different rates of sustainable energy source penetration, which barely reached 3.5% in 2023. In Tunisia, the use of sustainable energy is essential not only for ensuring grid stability but for combating climate change and reducing carbon emissions, aligning with the country’s environmental goals. The transition to sustainable energy significantly reduces the carbon footprint of the power sector, offering a sustainable solution for mitigating the adverse effects of climate change. Dynamic simulations were conducted for the isolated Tunisian system, separate from the interconnected grid, focusing on the critical scenario of the loss of a large electricity production unit. This study also examined the absence of sustainable energy integration and the effects of integration of different rates of renewable energy to evaluate the impact of reserves on the continuity of the Tunisian electrical service. Simulation results, which considered a 2023 grid model, show that with an integration trial of 20% renewable energy and, in the worst-case scenario, which represents the loss of the largest production group in the grid, the primary reserve of a given group—defined by the quantity of active energy—can be rapidly deployed to restore the balance between electricity supply and demand. Thus, reserves are a crucial solution for maintaining frequency within reasonable limits and ensuring the continuity of electrical services in Tunisia with varying rates from 10% to 20% integration of different sustainable energy sources. Full article
Show Figures

Figure 1

14 pages, 470 KiB  
Article
Phenotypic Evaluation of Saccharum spp. Genotypes during the Plant-Cane Crop for Biomass Production in Northcentral Mississippi
by Brian S. Baldwin, Anna L. Hale, Wyatt A. Eason and Jesse I. Morrison
Agriculture 2024, 14(8), 1375; https://doi.org/10.3390/agriculture14081375 - 16 Aug 2024
Viewed by 989
Abstract
Saccharum is relatively new to 33° N latitude. S. spontaneum readily hybridizes with commercial sugarcane (Saccharum spp.) and lends cold tolerance and greater yield to the hybrid progeny, called energycane. Since 2007, there have been numerous new hybrid and backcross energycane genotypes [...] Read more.
Saccharum is relatively new to 33° N latitude. S. spontaneum readily hybridizes with commercial sugarcane (Saccharum spp.) and lends cold tolerance and greater yield to the hybrid progeny, called energycane. Since 2007, there have been numerous new hybrid and backcross energycane genotypes developed but there is a paucity of information about them. Twenty energycane genotypes were tested in the first season of growth from cane propagules (plant cane; PC) against Ho 02-113 (a control) for two site-years in northcentral Mississippi. Grand (exponential) growth continued into October. The prevailing paradigm is that tonnage is what matters. Except for percentage cellulose, all factors tested (dry matter yield, extractable juice volume, °Brix, theoretical ethanol from fermentation, theoretical ethanol from cellulose, and total theoretical ethanol) were greater from the second site-location compared to the first. Dry matter yield (DMY) and total theoretical ethanol yield (TTEY) were moderately correlated. Over the two years of this test only Ho 14-9213 exceeded in mean DMY of Ho 02-113. Sixteen of the 19 test genotypes in this test equaled or exceeded the mean TTEY of Ho 02-113. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

13 pages, 823 KiB  
Article
Anaerobic Digestion and Hot Water Pretreatment of Tropically Grown C4 Energy Grasses: Mass, Carbon, and Energy Conversions from Field Biomass to Fuels
by Jon M. Wells, Susan E. Crow, Samir Kumar Khanal, Scott Turn, Andrew Hashimoto, Jim Kiniry and Norman Meki
Agronomy 2021, 11(5), 838; https://doi.org/10.3390/agronomy11050838 - 24 Apr 2021
Cited by 6 | Viewed by 2473
Abstract
The efficacy of C4 grasses as feedstocks for liquid fuel production and their climate mitigation potential remain unresolved in the tropics. To identify highly convertible C4 grasses, we measured final fuels and postprocess biomass produced in two laboratory-scale conversion pathways across [...] Read more.
The efficacy of C4 grasses as feedstocks for liquid fuel production and their climate mitigation potential remain unresolved in the tropics. To identify highly convertible C4 grasses, we measured final fuels and postprocess biomass produced in two laboratory-scale conversion pathways across 12 species and varieties within the Poaceae (grass) family. Total mass, carbon, and energy in final fuels and postprocess biomass were assessed based on field mass and area-based production. Two lignocellulosic processes were investigated: (1) anaerobic digestion (AD) to methane and (2) hot water pretreatment and enzymatic hydrolysis (HWP-EH) to ethanol. We found AD converted lignocellulose to methane more efficiently in terms of carbon and energy compared to ethanol production using HWP-EH, although improvements to and the optimization of each process could change these contrasts. The resulting data provide design limitations for agricultural production and biorefinery systems that regulate these systems as net carbon sources or sinks to the atmosphere. Median carbon recovery in final fuels and postprocess biomass from the studied C4 grasses were ~5 Mg C ha−1 year−1 for both methane and ethanol, while median energy recovery was ~200 MJ ha−1 year−1 for ethanol and ~275 MJ ha−1 year−1 for methane. The highest carbon and energy recovery from lignocellulose was achieved during methane production from a sugarcane hybrid called energycane, with ~10 Mg C ha−1 year−1 and ~450 MJ ha−1 year−1 of carbon and energy recovered, respectively, from fuels and post-process biomass combined. Carbon and energy recovery during ethanol production was also highest for energycane, with ~9 Mg C ha−1 year−1 and ~350 MJ ha−1 year−1 of carbon and energy recovered in fuels and postprocess biomass combined. Although several process streams remain unresolved, agricultural production and conversion of C4 grasses must operate within these carbon and energy limitations for biofuel and bioenergy production to be an atmospheric carbon sink. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy Contribute to Sustainable Global Development)
Show Figures

Figure 1

22 pages, 2428 KiB  
Article
Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries
by Jéssica Marcon Bressanin, Bruno Colling Klein, Mateus Ferreira Chagas, Marcos Djun Barbosa Watanabe, Isabelle Lobo de Mesquita Sampaio, Antonio Bonomi, Edvaldo Rodrigo de Morais and Otávio Cavalett
Energies 2020, 13(17), 4576; https://doi.org/10.3390/en13174576 - 3 Sep 2020
Cited by 61 | Viewed by 6962
Abstract
Large-scale deployment of both biochemical and thermochemical routes for advanced biofuels production is seen as a key climate change mitigation option. This study addresses techno-economic and environmental aspects of advanced liquid biofuels production alternatives via biomass gasification and Fischer–Tropsch synthesis integrated to a [...] Read more.
Large-scale deployment of both biochemical and thermochemical routes for advanced biofuels production is seen as a key climate change mitigation option. This study addresses techno-economic and environmental aspects of advanced liquid biofuels production alternatives via biomass gasification and Fischer–Tropsch synthesis integrated to a typical sugarcane distillery. The thermochemical route comprises the conversion of the residual lignocellulosic fraction of conventional sugarcane (bagasse and straw), together with eucalyptus and energy-cane as emerging lignocellulosic biomass options. This work promotes an integrated framework to simulate the mass and energy balances of process alternatives and incorporates techno-economic analyses and sustainability assessment methods based on a life-cycle perspective. Results show that integrated biorefineries provide greenhouse gas emission reduction between 85–95% compared to the fossil equivalent, higher than that expected from a typical sugarcane biorefinery. When considering avoided emissions by cultivated area, biorefinery scenarios processing energy-cane are favored, however at lower economic performance. Thermochemical processes may take advantage of the integration with the typical sugarcane mills and novel biofuels policies (e.g., RenovaBio) to mitigate some of the risks linked to the implementation of new biofuel technologies. Full article
(This article belongs to the Special Issue Analysis of Bio-Based Products for the Circular Economy)
Show Figures

Figure 1

15 pages, 2909 KiB  
Article
Effect of Moisture Content on Lignocellulosic Power Generation: Energy, Economic and Environmental Impacts
by Karthik Rajendran
Processes 2017, 5(4), 78; https://doi.org/10.3390/pr5040078 - 6 Dec 2017
Cited by 10 | Viewed by 7799
Abstract
The moisture content of biomass affects its processing for applications such as electricity or steam. In this study, the effects of variation in moisture content of banagrass and energycane was evaluated using techno-economic analysis and life-cycle assessments. A 25% loss of moisture was [...] Read more.
The moisture content of biomass affects its processing for applications such as electricity or steam. In this study, the effects of variation in moisture content of banagrass and energycane was evaluated using techno-economic analysis and life-cycle assessments. A 25% loss of moisture was assumed as a variation that was achieved by field drying the biomass. Techno-economic analysis revealed that high moisture in the biomass was not economically feasible. Comparing banagrass with energycane, the latter was more economically feasible; thanks to the low moisture and ash content in energycane. About 32 GWh/year of electricity was produced by field drying 60,000 dry MT/year energycane. The investment for different scenarios ranged between $17 million and $22 million. Field-dried energycane was the only economically viable option that recovered the investment after 11 years of operation. This scenario was also more environmentally friendly, releasing 16-gCO2 equivalent/MJ of electricity produced. Full article
Show Figures

Figure 1

14 pages, 269 KiB  
Article
Water Use and Water-Use Efficiency of Three Perennial Bioenergy Grass Crops in Florida
by John E. Erickson, Arkorn Soikaew, Lynn E. Sollenberger and Jerry M. Bennett
Agriculture 2012, 2(4), 325-338; https://doi.org/10.3390/agriculture2040325 - 19 Oct 2012
Cited by 28 | Viewed by 8533
Abstract
Over two-thirds of human water withdrawals are estimated to be used for agricultural production, which is expected to increase as demand for renewable liquid fuels from agricultural crops intensifies. Despite the potential implications of bioenergy crop production on water resources, few data are [...] Read more.
Over two-thirds of human water withdrawals are estimated to be used for agricultural production, which is expected to increase as demand for renewable liquid fuels from agricultural crops intensifies. Despite the potential implications of bioenergy crop production on water resources, few data are available on water use of perennial bioenergy grass crops. Therefore, the objective of this study was to compare dry matter yield, water use, and water-use efficiency (WUE) of elephantgrass, energycane, and giant reed, grown under field conditions for two growing seasons in North Central Florida. Using scaled sap flow sensor data, water use ranged from about 850 to 1150 mm during the growing season, and was generally greater for giant reed and less for elephantgrass. Despite similar or greater water use by giant reed, dry biomass yields of 35 to 40 Mg ha−1 were significantly greater for energycane and elephantgrass, resulting in greater WUE. Overall, water use by the bioenergy crops was greater than the rainfall received during the study, indicating that irrigation will be needed in the region to achieve optimal yields. Species differ in water use and WUE and species selection can play an important role with regard to potential consequences for water resources. Full article
(This article belongs to the Special Issue Biofuels, Food Security, and Accompanying Environmental Concerns)
Show Figures

Figure 1

Back to TopTop