Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = energy harvesting workspace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6429 KiB  
Article
Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester
by Wei-Jiun Su and Chu-Hsiang Tseng
Sensors 2023, 23(13), 5895; https://doi.org/10.3390/s23135895 - 25 Jun 2023
Cited by 3 | Viewed by 1812
Abstract
The harvesting efficiency of a cantilevered piezoelectric energy harvester is limited by its uneven strain distribution. Moreover, a cantilevered harvester requires a large workspace due to the large displacement of its free end. To address these issues, a novel piezoelectric energy harvester based [...] Read more.
The harvesting efficiency of a cantilevered piezoelectric energy harvester is limited by its uneven strain distribution. Moreover, a cantilevered harvester requires a large workspace due to the large displacement of its free end. To address these issues, a novel piezoelectric energy harvester based on an extended simply supported beam is proposed. The proposed design features a simply supported piezoelectric main beam with an extended beam attached to its roller end and a tip mass to reduce the resonant frequency. The theoretical model of the proposed piezoelectric energy harvester is developed based on the Euler–Bernoulli beam theory. The model has been experimentally validated through the fabrication of a prototype. The extended beam and tip mass are adjusted to see their influence on the performance of the harvester. The resonant frequency can be maintained by shortening the extended beam and increasing the tip mass simultaneously. A shorter extend beam leads to a more even strain distribution in the piezoelectric layer, resulting in an enhanced output voltage. Moreover, the simulation results show that a torsional spring is installed on the roller joint which greatly influences the voltage output. The strain distribution becomes more even when proper compressive preload is applied on the main beam. Experiments have shown that the proposed design enhances the output power by 86% and reduces tip displacement by 63.2% compared to a traditional cantilevered harvester. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 9644 KiB  
Article
Research on the Directional Adaptability of a Self-Adaptive Energy Harvester
by Minglei Han, Xu Yang and Shimin Guo
Sensors 2023, 23(11), 5106; https://doi.org/10.3390/s23115106 - 26 May 2023
Cited by 3 | Viewed by 1711
Abstract
With the continuous development of wireless sensor networks (WSNs), multi-directional energy harvesting technology has received widespread attention from scholars. In order to evaluate the performance of multi-directional energy harvesters, this paper uses a directional self-adaptive piezoelectric energy harvester (DSPEH) as an example, defines [...] Read more.
With the continuous development of wireless sensor networks (WSNs), multi-directional energy harvesting technology has received widespread attention from scholars. In order to evaluate the performance of multi-directional energy harvesters, this paper uses a directional self-adaptive piezoelectric energy harvester (DSPEH) as an example, defines the direction of the excitation in three-dimensional space, and studies the influence of excitations on the key parameters of the DSPEH. The rolling angle and pitch angle are used to define complex excitations in three-dimensional space, and the dynamic response of the excitation changes in a single direction and multiple directions is discussed. It is noteworthy that this work presents the concept of “Energy Harvesting Workspace” to describe the working ability of a multi-directional energy harvesting system. The workspace is expressed by the excitation angle and voltage amplitude, and energy harvesting performance is evaluated by the volume-wrapping method and area-covering method. The DSPEH exhibits good directional adaptability in two-dimensional space (rolling direction); in particular, when the mass eccentricity coefficient is r = 0 mm, 100% of the workspace in two-dimensional space is obtained. The total workspace in three-dimensional space depends entirely on the energy output in the pitch direction. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

21 pages, 3054 KiB  
Article
Complete Path Planning for a Tetris-Inspired Self-Reconfigurable Robot by the Genetic Algorithm of the Traveling Salesman Problem
by Anh Vu Le, Manimuthu Arunmozhi, Prabakaran Veerajagadheswar, Ping-Cheng Ku, Tran Hoang Quang Minh, Vinu Sivanantham and Rajesh Elara Mohan
Electronics 2018, 7(12), 344; https://doi.org/10.3390/electronics7120344 - 22 Nov 2018
Cited by 42 | Viewed by 7728
Abstract
The efficiency of autonomous systems that tackle tasks such as home cleaning, agriculture harvesting, and mineral mining depends heavily on the adopted area coverage strategy. Extensive navigation strategies have been studied and developed, but few focus on scenarios with reconfigurable robot agents. This [...] Read more.
The efficiency of autonomous systems that tackle tasks such as home cleaning, agriculture harvesting, and mineral mining depends heavily on the adopted area coverage strategy. Extensive navigation strategies have been studied and developed, but few focus on scenarios with reconfigurable robot agents. This paper proposes a navigation strategy that accomplishes complete path planning for a Tetris-inspired hinge-based self-reconfigurable robot (hTetro), which consists of two main phases. In the first phase, polyomino form-based tilesets are generated to cover the predefined area based on the tiling theory, which generates a series of unsequenced waypoints that guarantee complete coverage of the entire workspace. Each waypoint specifies the position of the robot and the robot morphology on the map. In the second phase, an energy consumption evaluation model is constructed in order to determine a valid strategy to generate the sequence of the waypoints. The cost value between waypoints is formulated under the consideration of the hTetro robot platform’s kinematic design, where we calculate the minimum sum of displacement of the four blocks in the hTetro robot. With the cost function determined, the waypoint sequencing problem is then formulated as a travelling salesman problem (TSP). In this paper, a genetic algorithm (GA) is proposed as a strong candidate to solve the TSP. The GA produces a viable navigation sequence for the hTetro robot to follow and to accomplish complete coverage tasks. We performed an analysis across several complete coverage algorithms including zigzag, spiral, and greedy search to demonstrate that TSP with GA is a valid and considerably consistent waypoint sequencing strategy that can be implemented in real-world hTetro robot navigations. The scalability of the proposed framework allows the algorithm to produce reliable results while navigating within larger workspaces in the real world, and the flexibility of the framework ensures easy implementation of the algorithm on other polynomial-based shape shifting robots. Full article
(This article belongs to the Special Issue Motion Planning and Control for Robotics)
Show Figures

Graphical abstract

Back to TopTop