Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = end wrinkling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 720 KB  
Article
An Anthocyanin- and Anti-Ageing Amino Acids-Enriched Pigmented Rice Innovation Promotes Healthy Ageing Through the Modulation of Telomere, Oxidative Stress and Inflammation Reduction: A Randomized Clinical Trial
by Jintanaporn Wattanathorn, Wipawee Thukham-mee, Sophida Phuthong, Weerapon Sangartit, Terdthai Thong-un, Praew Kotruchin, Thapanawong Mitsungnern, Suphap Im-uan, Nitiwat Sirijun and Supaporn Muchimapura
Int. J. Mol. Sci. 2025, 26(22), 10911; https://doi.org/10.3390/ijms262210911 - 11 Nov 2025
Cited by 1 | Viewed by 1286
Abstract
Owing to the great demand for healthy ageing promotion, and the anti-ageing reputation of anthocyanins and amino acids, we aimed to assess the effect of anthocyanin- and anti-ageing amino acids-enriched pigmented rice innovation on age-related cognitive decline, facial wrinkles, and a cardiovascular risk, [...] Read more.
Owing to the great demand for healthy ageing promotion, and the anti-ageing reputation of anthocyanins and amino acids, we aimed to assess the effect of anthocyanin- and anti-ageing amino acids-enriched pigmented rice innovation on age-related cognitive decline, facial wrinkles, and a cardiovascular risk, and explored its mechanisms and safety. A total of 90 male and female volunteers (45–65 years old) participated in a 3-arm randomized, double blinded, placebo-controlled parallel study for 12 weeks. They were randomly allocated to one of the following groups: placebo, “Zuper rice” (Zup) 2 g/day and “Zuper Rice” 4 g/day. Cognition, facial wrinkles, atherogenic index in plasma (AIP), telomere length, telomerase, oxidative stress and inflammatory markers, together with safety parameters, were assessed every 6 weeks until the end of the study and compared to the baseline data. A high dose of “Zup” improved cognition, facial wrinkles, AIP and oxidative stress, while a low dose of “Zup” improved cognition, telomere length, telomerase and inflammation. No toxicity signs were observed. Therefore, “Zup” is a potential healthy ageing promotion innovation which improves telomere length, telomerase activity and inflammation at a low dose, resulting in an improvement in cognitive decline and the suppression of oxidative stress. At a high dose, it gives rise to improvements in cognition, facial wrinkles and cardiovascular risk. Full article
(This article belongs to the Special Issue Current Research on Bioactives from Natural Products)
Show Figures

Graphical abstract

35 pages, 1430 KB  
Review
Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies
by Joon Yong Choi, Nam Gyoung Ha, Weon Ju Lee and Yong Chool Boo
Antioxidants 2025, 14(4), 498; https://doi.org/10.3390/antiox14040498 - 20 Apr 2025
Cited by 5 | Viewed by 14205
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in [...] Read more.
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Graphical abstract

17 pages, 14026 KB  
Article
Analysis of the Deformation Mechanisms of Fabrics Based on rCF Staple Fiber Yarns for Thermoset Composite Applications
by Tobias Georg Lang, Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif and Thomas Gereke
J. Compos. Sci. 2025, 9(4), 173; https://doi.org/10.3390/jcs9040173 - 2 Apr 2025
Viewed by 1645
Abstract
The draping of textile semi-finished products for complex geometries is still prone to errors, e.g., wrinkles, gaps, and fiber undulations, leading to reduced mechanical properties of the composite. Reinforcing textiles made from carbon fiber (CF) rovings (i.e., endless continuous fibers) can be draped [...] Read more.
The draping of textile semi-finished products for complex geometries is still prone to errors, e.g., wrinkles, gaps, and fiber undulations, leading to reduced mechanical properties of the composite. Reinforcing textiles made from carbon fiber (CF) rovings (i.e., endless continuous fibers) can be draped mainly based on their ability to deform under in-plane shearing. However, CF rovings are hardly stretchable in the fiber direction. These limited degrees of freedom make the production of complex shell-shaped geometries from standard CF-roving fabrics challenging. Contrary to continuous rovings, this paper investigates the processing of spun yarns made of recycled carbon fibers (rCFs), which are discontinuous staple fibers with defined lengths. rCFs are obtained from end-of-life composites or production waste, making them a sustainable alternative to virgin carbon fibers in the high-performance components of, e.g., automobiles, boats, or sporting goods. These staple fiber-spun yarns are considerably more stretchable, which is due to the ability of the individual fibers to slide against each other when deformed, resulting in improved formability of fabrics made from rCF yarns, enabling the draping of much more complex structures. This study aims to develop and characterize woven fabrics based on previous studies of rCF yarns for thermoset composites. In order to investigate staple fiber-spun yarns, a previous micro-scale modeling approach is extended. The formability of fabrics made from those rCF yarns is investigated through experimental forming tests and meso-scale simulations. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

28 pages, 3778 KB  
Article
Dermatological Health: A High-Performance, Embedded, and Distributed System for Real-Time Facial Skin Problem Detection
by Mehdi Pirahandeh
Electronics 2025, 14(7), 1319; https://doi.org/10.3390/electronics14071319 - 26 Mar 2025
Cited by 3 | Viewed by 1577
Abstract
The real-time detection of facial skin problems is crucial for improving dermatological health, yet its practical implementation remains challenging. Early detection and timely intervention can significantly enhance skin health while reducing the financial burden associated with traditional dermatological treatments. This paper introduces EM-YOLO, [...] Read more.
The real-time detection of facial skin problems is crucial for improving dermatological health, yet its practical implementation remains challenging. Early detection and timely intervention can significantly enhance skin health while reducing the financial burden associated with traditional dermatological treatments. This paper introduces EM-YOLO, an advanced deep learning framework designed for embedded and distributed environments, leveraging improvements in YOLO models (versions 5, 7, and 8) for high-performance, real-time skin condition detection. The proposed architecture incorporates custom layers, including Squeeze-and-Excitation Block (SEB), Depthwise Separable Convolution (DWC), and Residual Dropout Block (RDB), to optimize feature extraction, enhance model robustness, and improve computational efficiency for deployment in resource-constrained settings. The proposed EM-YOLO model architecture clearly delineates the role of each architectural component, including preprocessing, detection, and postprocessing phases, ensuring a structured and modular representation of the detection pipeline. Extensive experiments demonstrate that EM-YOLO significantly outperforms traditional YOLO models in detecting facial skin conditions such as acne, dark circles, enlarged pores, and wrinkles. The proposed model achieves a precision of 82.30%, recall of 71.50%, F1-score of 76.40%, and mAP@0.5 of 68.80%, which are 23.52%, 32.7%, 29.34%, and 24.68% higher than standard YOLOv8, respectively. Furthermore, the enhanced YOLOv8 custom layers significantly improve system efficiency, achieving a request rate of 15 Req/s with an end-to-end latency of 0.315 s and an average processing latency of 0.021 s, demonstrating 51.61% faster inference and 200% improved throughput compared to traditional SCAS systems. These results highlight EM-YOLO’s superior precision, robustness, and efficiency, making it a highly effective solution for real-time dermatological detection tasks in embedded and distributed computing environments. Full article
(This article belongs to the Special Issue Recent Advances of Software Engineering)
Show Figures

Figure 1

14 pages, 3098 KB  
Article
Aesthetic Speech Therapy: A New Protocol of Exercises Against Facial Aging, Focusing on Facial Muscles
by Luca Levrini, Andrea Carganico, Margherita Caccia, Alessandro Deppieri, Federica Marullo, Stefano Saran, Giorgio Binelli, Marco Iera and Piero Antonio Zecca
Appl. Sci. 2025, 15(4), 1742; https://doi.org/10.3390/app15041742 - 8 Feb 2025
Viewed by 5851
Abstract
The increasing emphasis on appearance and well-being has underscored the significance of self-care. From an aesthetic perspective, this entails addressing the early onset of wrinkles and the initial signs of aging. In response, new techniques have been developed, supplementing existing methods, to mitigate [...] Read more.
The increasing emphasis on appearance and well-being has underscored the significance of self-care. From an aesthetic perspective, this entails addressing the early onset of wrinkles and the initial signs of aging. In response, new techniques have been developed, supplementing existing methods, to mitigate the signs of aging. Aesthetic speech therapy has emerged in recent years as a non-invasive procedure to combat facial aging. The objective of this study is to evaluate its effects on the signs of facial aging in participants subjected to an experimental exercise protocol over a three-month period, focusing on orbicularis and zygomatic muscles, using both a digital evaluation analysis and a self-assessment questionnaire. A cohort of 21 female subjects, aged between 50 and 65, was instructed to perform a series of 4 targeted exercises for 15 min daily over a span of three months. The participants underwent monthly evaluations, each involving the collection of standardized photographic documentation and a three-dimensional facial scan. These scans were subsequently overlaid and analyzed by a colorimetric assay at the conclusion of the study period. Statistical tests were carried out by two-way ANOVA. Additionally, during the final evaluation (T3), the participants completed a questionnaire assessing their satisfaction with their self-image and the non-invasive aesthetic treatment they received. The statistical analysis of the overlays of the collected three-dimensional scans revealed a significant volumetric change around the orbicularis oris muscle. The difference between green and blue pixels was statistically significant (p < 0.05), as was the difference between blue and yellow pixels (p < 0.05). This change did not achieve statistical significance around the zygomatic muscles. The analysis of the participants’ questionnaire responses indicated an increasing level of satisfaction with their self-image at the end of the study compared to T0. Personal confidence increased by 20%, and participants reported a 53% improvement in satisfaction with their appearance in photographs. The observed volumetric changes may be attributed to modifications in the facial muscles targeted by the exercise protocol undertaken by the participants. However, further studies are warranted to delve deeper into this issue, considering the intricate process of facial aging and the complex three-dimensional structure of the face with its various components. Full article
(This article belongs to the Special Issue Artificial Intelligence for Healthcare)
Show Figures

Figure 1

18 pages, 8651 KB  
Article
Interlaminar Fracture Toughness Analysis for Reliability Improvement of Wind Turbine Blade Spar Elements Based on Pultruded Carbon Fiber-Reinforced Polymer Plate Manufacturing Method
by Hakgeun Kim, Yunjung Jang, Sejin Lee, Chanwoong Choi and Kiweon Kang
Materials 2025, 18(2), 357; https://doi.org/10.3390/ma18020357 - 14 Jan 2025
Cited by 1 | Viewed by 1755
Abstract
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion—a process of resin injection and curing in carbon fibers—is prone to initial [...] Read more.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion—a process of resin injection and curing in carbon fibers—is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design. In this context, this study introduces carbon fiber-reinforced polymer (CFRP/CFRP) and glass fiber-reinforced polymer (GFRP/CFRP) test specimens, which mimic the bonding structure of the spar cap, utilizing pultruded CFRP in accordance with ASTM standards to analyze the delamination traits of the spar. Delamination tests—covering Mode I (double cantilever beam), Mode II (end-notched flexure), and mixed mode (mixed-mode bending)—were performed to gauge displacement, load, and crack growth length. Through this crack growth mechanism, the interlaminar fracture toughness derived was examined, and the stiffness and strength changes compared to CFRP based on the existing prepreg manufacturing method were analyzed. In addition, the interlaminar fracture toughness for GFRP, which is a material in contact with the spar structure, was analyzed, and through this, it was confirmed that the crack behavior has less deviation compared to a single CFRP material depending on the stiffness difference between the materials when joining dissimilar materials. This means that the higher the elasticity of the high-stiffness material, the higher the initial crack resistance, but the crack growth behavior shows non-uniform characteristics thereafter. This comparison provides information for predicting interlaminar delamination damage within the interior and bonding area of the spar and skin and provides insight for securing the reliability of the design life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

24 pages, 7466 KB  
Review
Advanced Bending and Forming Technologies for Bimetallic Composite Pipes
by Hui Li, Yingxia Zhu, Wei Chen, Chen Yuan and Lei Wang
Materials 2025, 18(1), 111; https://doi.org/10.3390/ma18010111 - 30 Dec 2024
Cited by 4 | Viewed by 2460
Abstract
Bimetallic composite pipes, as critical components, effectively integrate the superior properties of diverse materials to meet the growing demand for lightweight, high-strength, and corrosion-resistant solutions. These pipes find extensive applications in petrochemical, power generation, marine engineering, refrigeration equipment, and automotive manufacturing industries. This [...] Read more.
Bimetallic composite pipes, as critical components, effectively integrate the superior properties of diverse materials to meet the growing demand for lightweight, high-strength, and corrosion-resistant solutions. These pipes find extensive applications in petrochemical, power generation, marine engineering, refrigeration equipment, and automotive manufacturing industries. This paper comprehensively reviews advanced bending and forming technologies, with a focus on challenges such as wrinkling, excessive wall thinning, springback, cross-sectional distortion, and interlayer separation. The review combines theoretical analysis, experimental findings, and numerical simulations to provide insights into defect prevention strategies and process optimization. It also evaluates emerging technologies such as artificial neural networks and intelligent control systems, which demonstrate significant potential in enhancing bending accuracy, reducing defects, and improving manufacturing efficiency. Additionally, this work outlines future research directions, emphasizing innovations required to meet the stringent performance standards of bimetallic composite pipe components in high-end applications. Full article
(This article belongs to the Special Issue Metalworking Processes: Theoretical and Experimental Study)
Show Figures

Figure 1

22 pages, 15766 KB  
Article
Pharmacological Effects of Antioxidant Mycosporine-Glycine in Alleviating Ultraviolet B-Induced Skin Photodamage: Insights from Metabolomic and Transcriptomic Analyses
by Kai Wang, Ling Qin, Huan Lin, Mengke Yao, Junhan Cao, Qing Zhang, Changfeng Qu, Yingying He, Jinlai Miao and Ming Liu
Antioxidants 2025, 14(1), 30; https://doi.org/10.3390/antiox14010030 - 29 Dec 2024
Cited by 3 | Viewed by 2321
Abstract
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, [...] Read more.
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days. At the end of the experiment, UVB exposure caused erythema, wrinkling, collagen degradation, and mast cell infiltration in mouse dorsal skin. M-Gly treatment improved skin appearance and reduced mast cell numbers, while also elevating antioxidant levels, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Furthermore, M-Gly reduced inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β, typically upregulated after UVB exposure. M-Gly also protected skin collagen by upregulating type I procollagen and decreasing MMP-1 levels. Skin metabolomic profiling identified 34 differentially abundant metabolites, and transcriptomic analysis revealed 752 differentially expressed genes. The combined metabolomic and transcriptomic data indicate that M-Gly’s protective effects may involve the regulation of ion transport, cellular repair, metabolic stability, collagen preservation, and the Nrf2/HO-1 pathway. These findings highlight M-Gly’s potential as an endogenous antioxidant for protecting skin from UVB-induced damage. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

15 pages, 5679 KB  
Article
Fermented Fish Collagen Diminished Photoaging-Related Collagen Decrease by Attenuating AGE–RAGE Binding Activity
by Seyeon Oh, So Young Lee, Jong-Won Jang, Kuk Hui Son and Kyunghee Byun
Curr. Issues Mol. Biol. 2024, 46(12), 14351-14365; https://doi.org/10.3390/cimb46120860 - 20 Dec 2024
Cited by 2 | Viewed by 1943
Abstract
Ultraviolet (UV) irradiation causes skin wrinkles and decreases elasticity. UV also increases binding between advanced glycation end products (AGEs) and the receptor for AGEs (RAGE), resulting in increased inflammation and activation of NF-κB. We evaluated whether fermented fish collagen (FC) could decrease photoaging [...] Read more.
Ultraviolet (UV) irradiation causes skin wrinkles and decreases elasticity. UV also increases binding between advanced glycation end products (AGEs) and the receptor for AGEs (RAGE), resulting in increased inflammation and activation of NF-κB. We evaluated whether fermented fish collagen (FC) could decrease photoaging via decreasing AGE–RAGE binding activity, which was associated with decreased TNF-α and NF-κB levels in UV-irradiated keratinocytes and animal skin. In the UV-irradiated keratinocytes, AGE–RAGE binding activity and TNF-α secretion levels were increased, and FC decreased these. Additionally, AGE–RAGE binding activity and TNF-α secretion levels were attenuated by soluble RAGE (RAGE inhibitor) in the UV-irradiated keratinocytes. FC decreased AGE–RAGE binding activity, TNF-α levels, and translocation of NF-κB in the UV-irradiated skin. Furthermore, FC decreased the expression of matrix metalloproteinases 1/3/9, which degrades collagen fibers, and Smad7, which inhibits Smad2/3, in UV-irradiated skin. FC increased Smad2/3 and collagen fiber accumulation. FC also increases skin moisture and elasticity. In conclusion, FC could attenuate skin photoaging via decreasing AGE–RAGE binding activity and its downstream signals such as TNF-α and NF-κB. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 6579 KB  
Article
Flange Buckling Mechanism in Incremental Shape Rolling of an Automotive-Type Variable Width Component
by Abdelrahman Essa, Buddhika Abeyrathna, Bernard Rolfe and Matthias Weiss
J. Manuf. Mater. Process. 2024, 8(6), 290; https://doi.org/10.3390/jmmp8060290 - 15 Dec 2024
Viewed by 1824
Abstract
Automotive structural components from Advanced High-Strength Steels (AHSS) can be manufactured with Flexible Roll Forming (FRF). The application of FRF in the automotive industry is limited due to flange wrinkling defects that increase with material strength. The new Incremental Shape Rolling process (ISR) [...] Read more.
Automotive structural components from Advanced High-Strength Steels (AHSS) can be manufactured with Flexible Roll Forming (FRF). The application of FRF in the automotive industry is limited due to flange wrinkling defects that increase with material strength. The new Incremental Shape Rolling process (ISR) has been shown to reduce wrinkling severity compared to FRF and therefore presents a promising alternative for the manufacture of high-strength automotive components. The current work analyzes for the first time the mechanisms that lead to wrinkling reduction in ISR based on the critical stress conditions that develop in the flange. For this, finite element process models are validated with experimental forming trials and used to investigate the material deformation and the forming stresses that occur in FRF and ISR when forming a variable-width automotive component. The results show that in ISR, the undeformed flange height decreases with increasing forming; this increases the critical buckling and wrinkling stresses with each forming pass and prevents the development of wrinkles towards the end of the forming process. In contrast, in FRF, the critical buckling or wrinkling stress is constant, while the longitudinal compressive stress in the flange increases with the number of forming passes and exceeds the critical stress. This leads to the development of severe wrinkles in the flange. Full article
(This article belongs to the Special Issue Advances in Material Forming: 2nd Edition)
Show Figures

Figure 1

14 pages, 2419 KB  
Article
Computational Methodology for the Development of Wrinkled Tubes by Plastic Deformation
by Samara C. R. Soares, Gilmar C. Silva and Elza M. M. Fonseca
Appl. Sci. 2024, 14(23), 11126; https://doi.org/10.3390/app142311126 - 29 Nov 2024
Cited by 3 | Viewed by 1371
Abstract
Traditional methods for wrinkled tubes involve welding processes and additional elements, such as plates, screws, rivets, and guides. Considering all the limitations of these processes, this work aims to propose a methodology that allows for maximising the manufacturing process of carbon steel tube [...] Read more.
Traditional methods for wrinkled tubes involve welding processes and additional elements, such as plates, screws, rivets, and guides. Considering all the limitations of these processes, this work aims to propose a methodology that allows for maximising the manufacturing process of carbon steel tube joints with seaming using cold forming and minimising the cost of the final product. Therefore, the present work aims to develop a computational model, based on the finite element method, to optimise the deformation process of T6 Aluminium tubes (ø 45 × ø 38.6 mm) with a length of 120 mm. The method uses a steel die with cavities to achieve wrinkled tubes by a forming process. This numerical study was carried out using the Ansys® 2022 R2 software. A nonlinear material and an incremental structural analysis were used. The applied methodology allowed the optimisation of process parameters, the application of forces during tube deformation, the geometry of the die cavity, boundary conditions, and mesh discretisation. Numerical modelling was carried out using the axial symmetry of the assembly (tube–die), enabling a simplified and efficient execution of the final tube geometry. The results were analysed based on the maximum pressure applied to the tube, and the vertical and horizontal displacements of the deformed component, thus obtaining the tube flow with complete filling inside the die cavity at the end of deformation. The die geometry that produced the best results presented a cavity with a radius of curvature of 3 mm, 6 mm in height, and with a depth of 4 mm. The optimised result of the die geometry generated satisfactory results, with the displacement on the x-axis of the tube of approximately 2.85 mm, ensuring the filling of the cavity at the end of the process. For this, the maximum pressure exerted on the tube was approximately 374 MPa. Full article
Show Figures

Figure 1

13 pages, 7177 KB  
Article
Preparation of an FA-Based Discoloration Material and Its Application in Jewelry Design
by Xiaomin Zhang, Xiangrui Gao, Yue Yuan, Guangqin Yang and Yanchen Li
Materials 2024, 17(22), 5628; https://doi.org/10.3390/ma17225628 - 18 Nov 2024
Cited by 2 | Viewed by 1713
Abstract
Fly ash (FA) is the main solid waste emitted from coal-fired power plants. Due to its high yield, low utilization rate, and occupation of a large amount of land, it exerts enormous pressure on the Earth’s environment. With the deepening of the concept [...] Read more.
Fly ash (FA) is the main solid waste emitted from coal-fired power plants. Due to its high yield, low utilization rate, and occupation of a large amount of land, it exerts enormous pressure on the Earth’s environment. With the deepening of the concept of sustainable development, exploring the reuse of industrial waste such as FA has become a key strategy. If FA can be combined with commonly used jewelry in people’s lives, it will be of great significance to promote the high-net-worth utilization of FA. Therefore, this study synthesized a fly-ash-based composite material with color-changing function and combined it with necklaces as the main material. In the first stage, after blending fly ash and slag, an alkaline activator with a total mass of 10% was added. When the proportion of fly ash was 60%, the compressive strength of the prepared fly-ash-based composite material reached 10.1 MPa. This was attributed to the reaction between sodium silicate in the alkaline activator and free CaO, MgO, and other substances in the fly ash to form hydrated silicate colloids, which solidify the fly ash and transform it into a complex three-dimensional network skeleton. In the second stage, a UV resistant coating with thermochromic function was obtained by blending acrylic resin, TiO2, and a thermosensitive color-changing agent. It was applied to the surface of fly-ash-based composite materials, and the results showed that as the content of the color-changing agent increased, the number of pores on the surface of the coating gradually decreased. When the content of color-changing agent was 10%, the prepared 10%FAB not only had good surface color but also had good thermal stability, UV absorption ability, superhydrophobicity, and mechanical properties. Therefore, 10%FAB was selected as the basic material for jewelry design. In the third stage, the traditional Chinese technique of “gold inlaid with jade” was utilized to develop jewelry applications for the FA composites. As such, 10%FAB was processed into necklaces, which not only had modern design aesthetics but also had good color-changing effects above 30 °C. And after a long period of UV aging experiments, the necklace did not show any wrinkles, bubbles, or other phenomena. Due to the excitation of TiO2 hole–electron pairs, the necklace’s UV absorption ability was further improved. This study demonstrates the potential application of industrial waste in decorative products, expands the high-end utilization of fly ash as a low-cost material, and provides new ideas for building a low-carbon lifestyle. Full article
Show Figures

Figure 1

26 pages, 4754 KB  
Article
Skin and Scalp Health Benefits of a Specific Botanical Extract Blend: Results from a Double-Blind Placebo-Controlled Study in Urban Outdoor Workers
by Vincenzo Nobile, Enza Cestone, Sabrina Ghirlanda, Andrea Poggi, Pau Navarro, Adrián García, Jonathan Jones and Nuria Caturla
Cosmetics 2024, 11(4), 139; https://doi.org/10.3390/cosmetics11040139 - 14 Aug 2024
Cited by 3 | Viewed by 11860
Abstract
Environmental pollution is increasingly recognized as a significant contributor to skin and scalp damage. Oral supplementation with a specific blend of four standardized botanical extracts (Rosmarinus officinalis, Lippia citriodora, Olea europaea leaf, and Sophora japonica) has been previously demonstrated [...] Read more.
Environmental pollution is increasingly recognized as a significant contributor to skin and scalp damage. Oral supplementation with a specific blend of four standardized botanical extracts (Rosmarinus officinalis, Lippia citriodora, Olea europaea leaf, and Sophora japonica) has been previously demonstrated to enhance skin health in individuals exposed to high environmental stress. Thus, it might represent a convenient strategy to also improve their scalp health aspect, particularly in subjects with sensitive scalps. To support these effects, a 12-week double-blind, randomized, placebo-controlled trial was performed in 66 women working outdoors in urban areas with high particulate matter (PM) levels and taking 250 mg of the botanical blend daily. Product efficacy was measured as follows: skin antioxidant status (FRAP); skin and scalp moisturization (corneometer), transepidermal water loss (tewameter), and oiliness (sebumeter); skin radiance and colour (spectrophotometer), elasticity and firmness (cutometer) and wrinkle depth (image analysis); and scalp clinical evaluation. Despite constant exposure to increased levels of PM, the tested product positively influenced all monitored parameters compared to both baseline and the placebo-treated group, in as early as 4 weeks. At the end of the study, key improvements included increased skin FRAP (21.9%), moisturization (9.5%), radiance (24.9%) and reduced wrinkle depth (−16.5%), dark spot pigmentation (−26.2%), and skin oiliness (−19.3%). For the scalp, moisturization increased (14.1%), TEWL decreased (−13.8%), and sebum content reduced by 16.2%. Additionally, 71% of subjects with sensitive scalps experienced reduced redness. These findings highlight the extensive benefits of the ingredient, expanding its application beyond conventional skin treatments to also alleviate scalp issues. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

10 pages, 2246 KB  
Article
Enhancement of Abnormal Grain Growth by Surface Quenching Treatment to Eliminate Cu–Cu Bonding Interfaces Using (111)-Oriented Nanotwinned Copper
by Tsan-Feng Lu, Yu-Ting Yen, Yuan-Fu Cheng, Pei-Wen Wang and YewChung Sermon Wu
Materials 2024, 17(13), 3245; https://doi.org/10.3390/ma17133245 - 2 Jul 2024
Cited by 2 | Viewed by 1816
Abstract
Cu–Cu joints have been adopted for ultra-high density of packaging for high-end devices. However, the processing temperature must be kept relatively low, preferably below 300 °C. In this study, a novel surface modification technique, quenching treatment, was applied to achieve Cu-to-Cu direct bonding [...] Read more.
Cu–Cu joints have been adopted for ultra-high density of packaging for high-end devices. However, the processing temperature must be kept relatively low, preferably below 300 °C. In this study, a novel surface modification technique, quenching treatment, was applied to achieve Cu-to-Cu direct bonding using (111)-oriented nanotwinned Cu. The quenching treatment enabled grain growth across the Cu–Cu bonding interface at 275 °C. During quenching treatment, strain energy was induced in the Cu film, resulting in a wrinkled surface morphology. To analyze the strain energy, we utilized an electron backscattered diffraction system to obtain crystallographic information and confirmed it using kernel average misorientation analysis. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

15 pages, 5465 KB  
Article
Finite Element Simulation and Experimental Verification of Circular Tube Nosing through Conical Dies
by Walid M. Shewakh and Ibrahim M. Hassab-Allah
Appl. Sci. 2024, 14(6), 2337; https://doi.org/10.3390/app14062337 - 11 Mar 2024
Viewed by 1562
Abstract
The process of tube nosing is a delicate art that involves forming the end of a tubular part without causing any collapse, buckling, or wrinkling. A recent study has delved into the different modes of failure that can occur during this process and [...] Read more.
The process of tube nosing is a delicate art that involves forming the end of a tubular part without causing any collapse, buckling, or wrinkling. A recent study has delved into the different modes of failure that can occur during this process and has determined the limits of tube nosing through the use of plasticity and thin/thick-walled tube theories. A finite element simulation was developed to replicate the cold-nosing process using conical dies to validate these theories. The results were compared to experimental outcomes for mild steel, hard steel, and annealed aluminium tubes to ensure accuracy. Through this analysis, we identified and confirmed the modes of failure that can restrict the plastic deformation for the tube nosing process. The outcomes were compared to analytical expressions and showed excellent agreement with the experiments, proving that these expressions provide a reliable reference guide for predicting the limits of the tube-nosing process. The FE simulation method also accurately models critical buckling stresses, nosing loads, and failure modes. Full article
(This article belongs to the Special Issue Advanced Metal Forming and Smart Manufacturing Processes)
Show Figures

Figure 1

Back to TopTop