Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = electrolytic manganese residue (EMR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4859 KiB  
Article
Engineered Ceramic Composites from Electrolytic Manganese Residue and Fly Ash: Fabrication Optimization and Additive Modification Mechanisms
by Zhaohui He, Shuangna Li, Zhaorui Li, Di Zhang, Guangdong An, Xin Shi, Xin Sun and Kai Li
Sustainability 2025, 17(14), 6647; https://doi.org/10.3390/su17146647 - 21 Jul 2025
Viewed by 441
Abstract
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite [...] Read more.
The sustainable valorization of electrolytic manganese residue (EMR) and fly ash (FA) presents critical environmental challenges. This study systematically investigates the performance optimization of EMR-FA ceramic composites through the coordinated regulation of raw material ratios, sintering temperatures, and additive effects. While the composite with 85 g FA exhibits the highest mechanical strength, lowest porosity, and minimal water absorption, the formulation consisting of 45 wt% EMR, 40 wt% FA, and 15 wt% kaolin is identified as a balanced composition that achieves an effective compromise between mechanical performance and solid waste utilization efficiency. Sintering temperature studies revealed temperature-dependent property enhancement, with controlled sintering at 1150 °C preventing the over-firing phenomena observed at 1200 °C while promoting phase evolution. XRD-SEM analyses confirmed accelerated anorthite formation and the morphological transformations of FA spherical particles under thermal activation. Additive engineering demonstrated that 8 wt% CaO addition enhanced structural densification through hydrogrossular crystallization, whereas Na2SiO3 induced sodium-rich calcium silicate phases that suppressed anorthite development. Contrastingly, ZrO2 facilitated zircon nucleation, while TiO2 enabled progressive performance enhancement through amorphous phase modification. This work establishes fundamental phase–structure–property relationships and provides actionable engineering parameters for sustainable ceramic production from industrial solid wastes. Full article
Show Figures

Figure 1

26 pages, 7085 KiB  
Review
Advances in Electrolytic Manganese Residue: Harmless Treatment and Comprehensive Utilization
by Weijian Yu, Xiaoya Li, Wenting Xu, Qingjun Guan, Fujia Zhou, Jiani Zhang, Li Wang, Yanxiu Wang and Honghu Tang
Separations 2025, 12(7), 180; https://doi.org/10.3390/separations12070180 - 7 Jul 2025
Viewed by 349
Abstract
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews [...] Read more.
Electrolytic manganese residue (EMR) is a byproduct of electrolytic manganese production, rich in soluble pollutants such as manganese and ammonia nitrogen. Traditional stockpiling methods result in contaminant leaching and water pollution, threatening ecosystems. Meanwhile, EMR has significant resource-recovery potential. This paper systematically reviews the harmless process and resource technology of EMR, efficiency bottlenecks, and the current status of industrial applications. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed. Among these, electrochemical purification stands out for its efficiency and environmental benefits, positioning it as a promising option for broad industrial use. The mechanisms of chemical leaching, precipitation, solidification, roasting, electrochemistry, and microorganisms were analyzed, revealing the complementarity between building materials and chemical materials (microcrystalline glass) in scale and high-value-added production. But the lack of impurity separation accuracy and market standards restricts its promotion. Finally, it proposes future directions for EMR resource utilization based on practical and economic considerations. Full article
(This article belongs to the Special Issue Solid Waste Recycling and Strategic Metal Extraction)
Show Figures

Figure 1

17 pages, 2251 KiB  
Article
Research on Preparation of Silicon–Manganese Organic Composite Fertilizer Using the Electrolytic Manganese Residue
by Xuli Li, Jirong Lan, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie and Shefeng Li
Materials 2025, 18(13), 3045; https://doi.org/10.3390/ma18133045 - 26 Jun 2025
Viewed by 393
Abstract
Electrolytic manganese residue (EMR), an acidic by-product from manganese production, presents dual challenges of environmental pollution and resource waste. This study developed a silicon–manganese organic compound fertilizer (SMOCF) via the aerobic fermentation of EMR supplemented with bagasse, molasses, and activated sludge. The physicochemical [...] Read more.
Electrolytic manganese residue (EMR), an acidic by-product from manganese production, presents dual challenges of environmental pollution and resource waste. This study developed a silicon–manganese organic compound fertilizer (SMOCF) via the aerobic fermentation of EMR supplemented with bagasse, molasses, and activated sludge. The physicochemical analysis revealed that the EMR’s composition was dominated by silicon (7.1% active Si), calcium, sulfur, and trace elements. Critical parameters during composting—including water-soluble Mn (1.48%), organic matter (8.05%), pH (7.4), moisture (20.28%), and germination index (GI = 87.78%)—met organic fertilizer standards, with the GI exceeding the phytotoxicity threshold (80%). The final SMOCF exhibited favorable agronomic properties: neutral pH, earthy texture, and essential macronutrients (1.36% K, 1.11% N, 0.48% P). Heavy metals (As, Cd, Cr, Pb) in the SMOCF predominantly existed in stable residual forms, with total concentrations complying with China’s organic fertilizer regulations (GB/T 32951-2016). The ecological risk assessment confirmed a minimal mobilization potential (risk assessment code < 5%), ensuring environmental safety. This work demonstrates a circular economy strategy to repurpose hazardous EMRs into agriculturally viable fertilizers, achieving simultaneous pollution mitigation and resource recovery. The optimized SMOCF meets quality benchmarks for organic fertilizers while addressing heavy metal concerns, providing a scalable solution for industrial EMR valorization. Further studies should validate the field performance and long-term ecological impacts to facilitate practical implementation. Full article
Show Figures

Figure 1

26 pages, 12548 KiB  
Article
Sustainable Utilization of Modified Electrolytic Manganese Residue as a Cement Retarder: Workability, Mechanical Properties, Hydration Mechanisms, Leaching Toxicity, and Environmental Benefits
by Liang Tang, Jan Fořt, Robert Černý and Zhaoyi He
Buildings 2025, 15(10), 1586; https://doi.org/10.3390/buildings15101586 - 8 May 2025
Viewed by 461
Abstract
This study aims to enhance the sustainable utilization of electrolytic manganese residue (EMR), an industrial solid waste rich in sulfates and pollutants, by modifying it with appropriate proportions of granulated blast furnace slag (GBFS) and carbide slag (CS) and evaluating its potential as [...] Read more.
This study aims to enhance the sustainable utilization of electrolytic manganese residue (EMR), an industrial solid waste rich in sulfates and pollutants, by modifying it with appropriate proportions of granulated blast furnace slag (GBFS) and carbide slag (CS) and evaluating its potential as a cement retarder. The influence of both the GBFS/CS ratio and the dosage of modified EMR on the performance of cement mortar was systematically investigated, focusing on workability, mechanical properties, hydration behavior, leaching toxicity, and carbon emissions. Results showed that GBFS and CS significantly reduced pollutant concentrations in EMR while improving gypsum crystallinity. Modified EMR exhibited retarding properties, extending the initial and final setting times of cement mortar from 98 min and 226 min to 169 min and 298 min. With an 8 wt.% dosage, the 28-day compressive strength reached 58.76 MPa, a 1.3-fold increase compared to cement mortar (45.21 MPa). The content of reactive SiO2, Al2O3, Ca(OH)2, and CaSO4·2H2O promoted secondary hydration of cement and generated significant ettringite (AFt) and calcium silicate hydrate (C-S-H) gels, forming a dense microstructure. Pollutants in the modified EMR-cement mortar were reduced through precipitation, substitution, and encapsulation, meeting leaching toxicity standards. This study highlights the feasibility and environmental benefits of employing modified EMR as a cement retarder, demonstrating its potential in sustainable building materials. Full article
Show Figures

Figure 1

16 pages, 5428 KiB  
Article
Basic Research on the Preparation of Electrolytic Manganese Residue–Red Mud–Ground Granulated Blast Furnace Slag–Calcium Hydroxide Composite Cementitious Material and Its Mechanical Properties
by Biao Peng, Lusen Wang, Zhonglin Li, Ye Xu, Weiguang Zhang and Yibing Li
Materials 2025, 18(6), 1218; https://doi.org/10.3390/ma18061218 - 10 Mar 2025
Cited by 1 | Viewed by 910
Abstract
A novel composite cementitious material was constructed by synergistically utilizing multiple industrial solid wastes, including electrolytic manganese residue (EMR), red mud (RM), and ground granulated blast furnace slag (GGBS), with calcium hydroxide [Ca(OH)2] as an alkaline activator. In addition, the mechanical [...] Read more.
A novel composite cementitious material was constructed by synergistically utilizing multiple industrial solid wastes, including electrolytic manganese residue (EMR), red mud (RM), and ground granulated blast furnace slag (GGBS), with calcium hydroxide [Ca(OH)2] as an alkaline activator. In addition, the mechanical properties of the composite cementitious materials were systematically analyzed under different raw material ratios, alkali activator dosages, and water-binder ratios. To further investigate the hydration products and mechanisms of the composite cementitious material, characterization methods, for instance, XRD, FT-IR, SEM-EDS, and TG-DTG, were employed to characterize the materials. To ensure that the composite cementitious material does not cause additional environmental pressure, it was analyzed for toxic leaching. The relevant experimental results indicate that the optimal ratio of the EMR–RM–GGBS–Ca(OH)2 components of the composite cementitious material is EMR content of 20%, RM content of 15%, GGBS content of 52%, calcium hydroxide as alkali activator content of 13%, and water-binder ratio of 0.5. Under the optimal ratio, the composite cementitious material at 28 days exhibited a compressive strength of 27.9 MPa, as well as a flexural strength of 7.5 MPa. The hydration products in the as-synthesized composite cementitious material system primarily encompassed ettringite (AFt) and hydrated calcium silicate (C-S-H), and their tight bonding in the middle and later curing stages was the main source of engineering mechanical strength. The heavy metal concentrations in the 28-day leaching solution of the EMR–RM–GGBS–Ca(OH)2 composite cementitious material fall within the limits prescribed by the drinking water hygiene standard (GB5749-2022), indicating that this composite material exhibits satisfactory safety performance. To sum up, it is elucidated that the novel process involved in this research provide useful references for the pollution-free treatment and resource utilization of solid wastes such as red mud and electrolytic manganese residue in the future. Full article
Show Figures

Figure 1

13 pages, 5479 KiB  
Article
Self-Foaming Expanded Ceramsites Prepared from Electrolytic Manganese Residue, Red Mud and Waste Soil
by Zhuowen Yang, Xuesong Lu, Jie Wang and Hongbo Tan
Materials 2025, 18(2), 356; https://doi.org/10.3390/ma18020356 - 14 Jan 2025
Cited by 3 | Viewed by 881
Abstract
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were [...] Read more.
In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM. The mechanism behind the reaction among EMR, RM, and WS and self-foaming was discussed. The results showed that both the temperature and mixing ratio significantly influenced the basic performance of SEC. With the temperature lower than 1200 °C, sphere appearance could be maintained in all of these four groups; however, the density, porosity, and compressive strength in the cylinder seemed unacceptable. When the temperature rose up to 1220 °C, sphere appearance could be only found in the group whose mixing ratio of EMR, RM, and WS was 2:2.5:0.5. Under this condition, the excellent performance of SEC was observed, with a porosity of 46.7%, bulk density of 0.61 g/cm3, and 3 d compressive strength in a cylinder of 26.82 MPa. The mechanism behind the reaction among EMR, RM, and WS could be described: when the temperature is up to 1180 °C, an obvious chemical reaction took place, followed by the liquid phase being produced and the gas released by the decomposition of Fe2O3 in RM and gypsum in EMR. When the temperature is up to 1200 °C, the viscosity of the liquid phase and the rate of gas generation achieved the balance, and the liquid phase encapsulated the gas and anorthite (CaAl2Si2O8) began to grow slowly. As time passed, self-foaming expanded ceramsite was prepared. The results of this study are of great significance in the field of artificial lightweight aggregate and industrial solid waste resource utilization. Full article
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Early Strength Enhancement Mechanism of CaO-Modified Electrolytic Manganese Residue-Based Supersulfate Cement
by Yundan Du, Qing Chen, Fufei Wu, Weiwei Li, Luxian Meng and Yang Liu
Materials 2025, 18(2), 270; https://doi.org/10.3390/ma18020270 - 9 Jan 2025
Cited by 2 | Viewed by 708
Abstract
Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when [...] Read more.
Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator. This results in the preparation of CaO-modified electrolytic manganese residue-based supersulfate cement (Abbreviated as “SSC”), facilitating the harmless and resourceful utilization of EMR. This study aims to determine the optimal dosage of CaO as the alkali activator for GGBS in SSC. A comprehensive analysis was conducted on four groups, including a control group. The mass ratio of EMR, GGBS, and cement in SSC was fixed as 35:60:5, and the optimum mixing ratio of lime powder as an external admixture was investigated through mechanical tests and microscopic experiments. The hydration products and mechanism of the cementitious materials were analyzed using X-ray diffraction (XRD), pH measurements, thermogravimetric and differential thermogravimetric analysis (TG-DTG), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM). The results indicated that, under the combined influence of trace cement and raw lime powder, EMR effectively activated GGBS. The primary hydration products of the SSC are AFt and hydrated calcium silicate (C-S-H), which contributed to the mechanical strength of the SSC. At a hydration age of 3 days, the optimal CaO blending ratio was found to be 8% by mass of dried EMR. With this ratio, the compressive strength of SSC reached 18.2 MPa, the pore size of hardened slurry was refined, the structure became dense, and hydration products increased. It could be concluded that CaO enhances the early strength of SSC when used as an alkali activator. Full article
Show Figures

Figure 1

28 pages, 4944 KiB  
Review
Innovative Techniques for Electrolytic Manganese Residue Utilization: A Review
by Andrews Larbi, Xiping Chen, Suliman Muhammad Khan and Tang Fangheng
Waste 2024, 2(3), 354-381; https://doi.org/10.3390/waste2030020 - 30 Aug 2024
Viewed by 4116
Abstract
Electrolytic Manganese Residue (EMR) is a secondary material generated during the process of manganese production, poses significant environmental challenges, including land consumption and contamination threats to soil and water bodies due to its heavy metal content, soluble manganese, ammonia nitrogen, and disposal issues. [...] Read more.
Electrolytic Manganese Residue (EMR) is a secondary material generated during the process of manganese production, poses significant environmental challenges, including land consumption and contamination threats to soil and water bodies due to its heavy metal content, soluble manganese, ammonia nitrogen, and disposal issues. This review thoroughly examines EMR, emphasizing its metallurgical principles, environmental impacts, and sustainable treatment methods. We critically analyze various approaches for EMR management, including resource recovery, utilization of construction materials, and advanced treatment techniques to mitigate its environmental challenges. Through an extensive review of recent EMR-related literature and case studies, we highlight innovative strategies for EMR valorization, such as the extraction of valuable metals, conversion into supplementary cementitious materials, and its application in environmental remediation. Our findings suggest that integrating metallurgical principles with environmental engineering practices can unlock EMR’s potential as a resource, contributing to the circular economy and reducing the environmental hazards associated with its disposal. This study aims to deepen the understanding of EMR’s comprehensive utilization, offering insights into future research directions and practical applications for achieving sustainable management of electrolytic manganese waste. Finally, we propose some recommendations to address the issue of EMR, intending to offer guidance for the proper disposal and effective exploitation of EMR. Full article
Show Figures

Figure 1

14 pages, 6996 KiB  
Article
Investigating the Dewatering Efficiency of Sewage Sludge with Optimized Ratios of Electrolytic Manganese Residue Components
by Xuquan Huang, Jun Wang, Fei Xue, Xiaorong Zhao, Ziyao Shi, Qingyang Liang, Haojie Wang and Ziyu Zhao
Materials 2024, 17(14), 3605; https://doi.org/10.3390/ma17143605 - 22 Jul 2024
Cited by 1 | Viewed by 1633
Abstract
As an industrial waste residue, Electrolytic Manganese Residue (EMR) can greatly promote sludge dewatering and further particle-size optimization can significantly strengthen sludge dewaterability. In this study, the effects of ammonium sulfate, calcium sulphate dihydrate, and manganese carbonate in EMR on sludge dewatering performance [...] Read more.
As an industrial waste residue, Electrolytic Manganese Residue (EMR) can greatly promote sludge dewatering and further particle-size optimization can significantly strengthen sludge dewaterability. In this study, the effects of ammonium sulfate, calcium sulphate dihydrate, and manganese carbonate in EMR on sludge dewatering performance were investigated using the response surface optimization method. It was found that the optimized ratio of three components in EMR was 1.0:1.6:2.2 based on capillary suction time (CST), specific resistance of filtration (SRF), and zeta potential of dewatered sludge. The composition ratio of particle-size optimized EMR was modified based on the above optimization, resulting in a significant increase in sludge dewatering performance (CST and SRF reduced by 8.7% and 11.2%, respectively). Compared with those in original sludge, the content of bound extracellular polymeric substances in the conditioned sludge with optimized ratio was drastically reduced while that of soluble extracellular polymeric substances was slightly increased, which was in accordance with the decline of fluorescence intensity. These findings indicated the disintegration of extracellular polymeric substances, the enhancement of hydrophobicity, and dewatering properties of the sludge. In summary, optimized EMR can effectively intensify the dewaterability of sludge, providing a competitive solution for dewatering and further disposal of sludge. Full article
Show Figures

Figure 1

15 pages, 9004 KiB  
Article
Study on the Alkali–Sulfur Co-Activation and Mechanical Properties of Low-Carbon Cementitious Composite Materials Based on Electrolytic Manganese Residue, Carbide Slag, and Granulated Blast-Furnace Slag
by Jianbo Liang, Rongjin Liu, Daiyan Jing, Fuhua Lu, Yanrong Zhao, Zhihan Xie, Wanyu Huang and Tingchao Chen
Appl. Sci. 2024, 14(11), 4355; https://doi.org/10.3390/app14114355 - 21 May 2024
Cited by 4 | Viewed by 1626
Abstract
Industrial solid waste is characterized by complex mineral phases and various components. Low-carbon cementitious materials can be prepared through precise regulation based on the material composition and properties of various industrial solid wastes. In this study, electrolytic manganese residue (EMR), carbide slag (CS), [...] Read more.
Industrial solid waste is characterized by complex mineral phases and various components. Low-carbon cementitious materials can be prepared through precise regulation based on the material composition and properties of various industrial solid wastes. In this study, electrolytic manganese residue (EMR), carbide slag (CS), and granulated blast-furnace slag (GBFS) were used as alternatives to cement to prepare multicomponent solid waste cementitious materials. The effects of the proportions of EMR and CS on the cementitious activity of GBFS and the activation mechanism of alkali and sulfur were studied. The results showed that with increasing EMR content, the strength first increased and then decreased. At a GBFS content of 20%, CS content of 2%, and EMR content of 8%, the compressive strength was highest, reaching 45.5 MPa after 28 days of curing, mainly because the OH in CS and SO42− in EMR synergistically stimulated the active components in GBFS. Hydrated products such as ettringite and hydrated calcium silicate (C–S–H gel) were generated and interlaced with each other to improve the densification of the mortar. Overall, the proposed system provides an avenue to reduce or replace the production of cement clinker and achieve the high-value-added utilization of industrial solid waste. Full article
(This article belongs to the Special Issue Sustainable Materials and Waste Recovery)
Show Figures

Figure 1

14 pages, 960 KiB  
Article
Influence of EMR–Phosphogypsum–Biochar Mixtures on Sudan Grass: Growth Dynamics and Heavy Metal Immobilization
by Yang Luo, Fang Liu, Xuqiang Luo, Jun Ren, Jinmei Guo and Jinxin Zhang
Agronomy 2024, 14(5), 945; https://doi.org/10.3390/agronomy14050945 - 30 Apr 2024
Cited by 4 | Viewed by 1402
Abstract
This study investigates the growth dynamics and heavy metal immobilization in Sudan grass cultivated on substrates composed of electrolytic manganese residue (EMR), phosphogypsum, and chili straw biochar. Pot experiments revealed that a substrate with phosphogypsum constituting 75% of the mix hinders Sudan grass [...] Read more.
This study investigates the growth dynamics and heavy metal immobilization in Sudan grass cultivated on substrates composed of electrolytic manganese residue (EMR), phosphogypsum, and chili straw biochar. Pot experiments revealed that a substrate with phosphogypsum constituting 75% of the mix hinders Sudan grass seed germination. Compared with sole EMR utilization, the composite substrates notably enhanced plant growth, evidenced by increases in plant height and fresh weight. The integration of these substrates led to a significant elevation in total chlorophyll content (up to 54.39%) and a reduction in malondialdehyde (MDA) levels (up to 21.66%), indicating improved photosynthetic activity and lower oxidative stress. The addition of biochar reduced the content of Zn, Cd, and Mn in the roots of Sudan grass by up to 25.92%, 20.00%, and 43.17%, respectively; and reduced the content of Pb, Mn, and Cr in the shoot by up to 33.72%, 17.53%, and 26.32%, respectively. Fuzzy membership function analysis identified the optimal substrate composition as 75% EMR and 25% phosphogypsum, with 5% chili straw biochar, based on overall performance metrics. This study adopts the concept of “to treat waste with waste”. The approach is to fully consider the fertility characteristics of EMR, phosphogypsum, and biochar, underscoring the potential for utilizing waste-derived materials in cultivating Sudan grass and offering a sustainable approach to plant growth and heavy metal management. Full article
Show Figures

Figure 1

16 pages, 5040 KiB  
Article
Synthesis of Electrolytic Manganese Slag–Solid Waste-Based Geopolymers: Compressive Strength and Mn Immobilization
by Bao Mi, Hui Zhao, Meng Lu, Yi Zhou and Yongjie Xue
Materials 2024, 17(6), 1431; https://doi.org/10.3390/ma17061431 - 21 Mar 2024
Cited by 5 | Viewed by 1729
Abstract
The massive stockpiling of electrolytic manganese residue (EMR) has caused serious environmental pollution. In this study, EMR, coal gangue (CG), and fly ash (FA) were used as raw materials to obtain the optimal mix ratio based on Design-Expert mixture design. The effects of [...] Read more.
The massive stockpiling of electrolytic manganese residue (EMR) has caused serious environmental pollution. In this study, EMR, coal gangue (CG), and fly ash (FA) were used as raw materials to obtain the optimal mix ratio based on Design-Expert mixture design. The effects of activator modulus, liquid–solid (L/S) ratio, and curing temperature on the mechanical properties of geopolymers were investigated. The results showed that the compressive strength of the prepared geopolymer was 12.0 MPa, and the 28d leaching of Mn was 0.123 mg/L under the conditions of EMR:CG:FA = 0.43:0.34:0.23, L/S = 0.9, a curing temperature of 60 °C, and a curing time of 24 h. This indicates that the geopolymer is an environmentally friendly material with high compressive strength. The mineral composition of the geopolymer is mainly hydrated calcium silicate and geopolymer gel. In addition, a more stable new mineral phase, MnSiO3, was generated. The Fourier transform infrared (FTIR) spectrogram showed that the peak at 1100 m−1 was shifted to 1112 cm−1, which indicated that a geopolymerization reaction had occurred. Through scanning electron microscopy (SEM) and energy dispersive spectrum (EDS) analysis, it was identified that the geopolymerization produced a large amount of amorphous gelatinous substances with a relatively dense structure, the major elements being oxygen, silicon, aluminum, calcium, and sodium. Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes–Volume 2)
Show Figures

Figure 1

13 pages, 5148 KiB  
Article
Adsorption of Phosphate by Two-Step Synthesis of Ceramsite from Electrolytic Manganese Residue/Dredged Sludge
by Hao Cheng, Wei Shi, Song Liu, Yong Wang, Jia Song, Yu Long, Yuan Xiang and Yongjie Xue
Materials 2024, 17(4), 939; https://doi.org/10.3390/ma17040939 - 17 Feb 2024
Cited by 1 | Viewed by 1707
Abstract
Carrying out research on the management of electrolytic manganese residue (EMR) is necessary to maintain the environment and human health. The dredged sludge (DS) and water hyacinth (WH) generated from dredging projects are potential environmental threats, and therefore suitable methods need to be [...] Read more.
Carrying out research on the management of electrolytic manganese residue (EMR) is necessary to maintain the environment and human health. The dredged sludge (DS) and water hyacinth (WH) generated from dredging projects are potential environmental threats, and therefore suitable methods need to be found for their treatment. In this study, ceramsite was prepared by a two-step low-temperature firing method using DS and EMR as raw materials, WH as a pore-forming additive, and aluminate cement as a binder for the adsorption of phosphorus from wastewater. The optimal ratio and process parameters of the ceramsite were determined by mechanical and adsorption properties. The static adsorption experiments were conducted to study the effect of ceramsite dosage and solution pH on the removal of phosphorus. At the same time, dynamic adsorption experiments were designed to consider the influence of flow rate on its actual absorption effect, to explore the actual effect of ceramsite in wastewater treatment, and to derive a dynamic adsorption model that can provide technical support and theoretical guidance for environmental management. Full article
(This article belongs to the Special Issue Environmentally Friendly Adsorption Materials)
Show Figures

Figure 1

14 pages, 6552 KiB  
Article
Study on the Performance and Mechanism of Cement Solidified Desulfurization Manganese Residue
by Shicheng Wang, Fang Wang, Jialing Che and Lihua Ma
Materials 2023, 16(11), 4184; https://doi.org/10.3390/ma16114184 - 4 Jun 2023
Cited by 9 | Viewed by 2167
Abstract
Desulfurized manganese residue (DMR) is an industrial solid residue produced by high-temperature and high-pressure desulfurization calcination of electrolytic manganese residue (EMR). DMR not only occupies land resources but also easily causes heavy metal pollution in soil, surface water, and groundwater. Therefore, it is [...] Read more.
Desulfurized manganese residue (DMR) is an industrial solid residue produced by high-temperature and high-pressure desulfurization calcination of electrolytic manganese residue (EMR). DMR not only occupies land resources but also easily causes heavy metal pollution in soil, surface water, and groundwater. Therefore, it is necessary to treat the DMR safely and effectively so that it can be used as a resource. In this paper, Ordinary Portland cement (P.O 42.5) was used as a curing agent to treat DMR harmlessly. The effects of cement content and DMR particle size on flexural strength, compressive strength, and leaching toxicity of a cement-DMR solidified body were studied. The phase composition and microscopic morphology of the solidified body were analyzed by XRD, SEM, and EDS, and the mechanism of cement-DMR solidification was discussed. The results show that the flexural strength and compressive strength of a cement-DMR solidified body can be significantly improved by increasing the cement content to 80 mesh particle size. When the cement content is 30%, the DMR particle size has a great influence on the strength of the solidified body. When the DMR particle size is 4 mesh, the DMR particles will form stress concentration points in the solidified body and reduce its strength. In the DMR leaching solution, the leaching concentration of Mn is 2.8 mg/L, and the solidification rate of Mn in the cement-DMR solidified body with 10% cement content can reach 99.8%. The results of XRD, SEM, and EDS showed that quartz (SiO2) and gypsum dihydrate (CaSO4·2H2O) were the main phases in the raw slag. Quartz and gypsum dihydrate could form ettringite (AFt) in the alkaline environment provided by cement. Mn was finally solidified by MnO2, and Mn could be solidified in C-S-H gel by isomorphic replacement. Full article
(This article belongs to the Special Issue Microstructures and Mechanical Properties of Cement-Based Composites)
Show Figures

Figure 1

14 pages, 5695 KiB  
Article
Study on the Mechanical Properties and Hydration Behavior of Steel Slag–Red Mud–Electrolytic Manganese Residue Based Composite Mortar
by Libo Zhou, Ping Chen, Cheng Hu, Haiyang Xia and Zhifeng Liang
Appl. Sci. 2023, 13(10), 5913; https://doi.org/10.3390/app13105913 - 11 May 2023
Cited by 11 | Viewed by 1917
Abstract
The functional and mechanical properties of steel slag (SS)–red mud (RM)–electrolytic manganese residue (EMR)-based composite mortar under different matching ratio conditions were investigated in this paper to examine the synergistic cementing effect among multiple solid wastes. The hydration characteristics of the composite mortar [...] Read more.
The functional and mechanical properties of steel slag (SS)–red mud (RM)–electrolytic manganese residue (EMR)-based composite mortar under different matching ratio conditions were investigated in this paper to examine the synergistic cementing effect among multiple solid wastes. The hydration characteristics of the composite mortar and its microstructure were characterized by the heat of hydration assessment, X-ray diffraction, thermogravimetric analysis, and other tests. The results of the study showed that compared with the pure cement group, 30% SS alone will inhibit the hydration reaction of the slurry, thus reducing the mechanical properties of the mortar, while compounding the appropriate amount of RM, and EMR can effectively reduce the negative impact of SS on the mechanical properties of the mortar. The flexural and compressive strengths of the composite mortar at 28 d were the highest when 15% of SS, 12% of RM, and 3% of EMR were mixed, which were 7.2 MPa and 41.4 MPa at 28 d, respectively. Compared with the test group with 30% SS alone, the flexural and compressive strengths increased by 18.0% and 25.5%. This is mainly because the incorporation of RM and EMR not only plays the role of physical filling, but the free alkali in RM and sulfate material in EMR can also compoundly stimulate the hydration activity of SS to produce more calcium alumina (AFt) and hydrated calcium silicate (C–S–H gel), thus improving the microstructure of mortar, which makes the overall decrease of 26.35% of multiharmful and harmful pores and the overall increase of harmless and less harmful pores of composite mortar specimens of 43.57%. Full article
Show Figures

Figure 1

Back to TopTop