Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = electrogenerated chemiluminescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2035 KiB  
Article
Electrogenerated Chemiluminescence Biosensor for Quantization of Matrix Metalloproteinase-3 in Serum via Target-Induced Cleavage of Oligopeptide
by Manping Qian, Yu Zeng, Meng Li, Qiang Gao, Chengxiao Zhang and Honglan Qi
Biosensors 2024, 14(4), 181; https://doi.org/10.3390/bios14040181 - 8 Apr 2024
Cited by 2 | Viewed by 2086
Abstract
A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) [...] Read more.
A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) complex ([(3-pba)2Ir(bpy-COOH)](PF6)) (3-pba = 3-(2-pyridyl) benzaldehyde, bpy-COOH = 4′-methyl-2,2′-bipyridine-4-carboxylic acid) with an oligopeptide (CGVPLSLTMGKGGK). An ECL biosensor was fabricated by firstly casting Nafion and gold nanoparticles (AuNPs) on a glassy carbon electrode and then self-assembling both of the ECL probes, 6-mercapto-1-hexanol and zwitterionic peptide, on the electrode surface, from which the AuNPs could be used to amplify the ECL signal and Ir-peptide could serve as an ECL probe to detect the MMP-3. Thanks to the MMP-3-induced cleavage of the oligopeptide contributing to the decrease in ECL intensity and the amplification of the ECL signal using AuNPs, the ECL biosensor could selectively and sensitively quantify MMP-3 in the concentration range of 10–150 ng·mL−1 and with both a limit of quantification (26.7 ng·mL−1) and a limit of detection (8.0 ng·mL−1) via one-step recognition. In addition, the developed ECL biosensor showed good performance in the quantization of MMP-3 in serum samples, with a recovery of 92.6% ± 2.8%–105.6% ± 5.0%. An increased level of MMP-3 was found in the serum of rheumatoid arthritis patients compared with that of healthy people. This work provides a sensitive and selective biosensing method for the detection of MMP-3 in human serum, which is promising in the identification of patients with rheumatoid arthritis. Full article
(This article belongs to the Special Issue Nanomaterials for Biosensors)
Show Figures

Graphical abstract

14 pages, 2847 KiB  
Article
One-Step Fabrication of Highly Sensitive Tris(2,2′-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Graphene-Titania-Nafion Composite Film
by Sang Jung Lee, Don Hui Lee and Won-Yong Lee
Sensors 2022, 22(8), 3064; https://doi.org/10.3390/s22083064 - 15 Apr 2022
Cited by 3 | Viewed by 2313
Abstract
A highly sensitive tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor based on a graphene-titania-Nafion composite film has been prepared in a simple one-step manner. In the present work, a highly concentrated 0.1 M Ru(bpy)32+ solution was mixed with an [...] Read more.
A highly sensitive tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor based on a graphene-titania-Nafion composite film has been prepared in a simple one-step manner. In the present work, a highly concentrated 0.1 M Ru(bpy)32+ solution was mixed with an as-prepared graphene-titania-Nafion composite solution (1:20, v/v), and then a small aliquot (2 µL) of the resulting mixture solution was cast on a glassy carbon electrode surface. This one-step process for the construction of an ECL sensor shortens the fabrication time and leads to reproducible ECL signals. Due to the synergistic effect of conductive graphene and mesoporous sol-gel derived titania-Nafion composite, the present ECL sensor leads to a highly sensitive detection of tripropylamine from 1.0 × 10−8 M to 2.0 × 10−3 M with a detection limit of 0.8 nM (S/N = 3), which is lower in comparison to that of the ECL sensor based on the corresponding ECL sensor based on the titania-Nafion composite containing carbon nanotube. The present ECL sensor also shows a good response for nicotinamide adenine dinucleotide hydrogen (NADH) from 1.0 × 10−6 M to 1.0 × 10−3 M with a detection limit of 0.4 µM (S/N = 3). Thus, the present ECL sensor can offer potential benefits in the development of dehydrogenase-based biosensors. Full article
(This article belongs to the Special Issue Electrochemiluminescence Sensing and Detection System)
Show Figures

Figure 1

10 pages, 2896 KiB  
Article
Highly Sensitive Detection of the Insecticide Azamethiphos by Tris(2,2′-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence
by Tesfaye Hailemariam Barkae, Abdallah M. Zeid and Guobao Xu
Sensors 2022, 22(7), 2519; https://doi.org/10.3390/s22072519 - 25 Mar 2022
Viewed by 2818
Abstract
Azamethiphos (AZA) is an insecticide and neurotoxic agent that causes the inhibition of acetylcholinesterase (AChE). AChE is a vital enzyme for neurotransmission because it metabolizes acetylcholine neurotransmitter at the synaptic cleft and terminates synaptic transmission. It is worth mentioning that organophosphates and carbamates [...] Read more.
Azamethiphos (AZA) is an insecticide and neurotoxic agent that causes the inhibition of acetylcholinesterase (AChE). AChE is a vital enzyme for neurotransmission because it metabolizes acetylcholine neurotransmitter at the synaptic cleft and terminates synaptic transmission. It is worth mentioning that organophosphates and carbamates inhibit AChE. These AChE inhibitors bind to the active site of the enzyme and inactivate it, leading to paralysis and death. Herein, for the first time, we develop a sensitive, low-cost, and rapid electrogenerated chemiluminescence (ECL) system for the detection of AZA. The designed ECL sensor was applied for the highly sensitive detection of AZA with a wide dynamic range (from 0.1 μM to 1000 μM) and low detection limit of 0.07 μM (S/N = 3). The practical utility of the sensor demonstrates high recoveries (96–102%) in real samples of lake water and wastewater. Full article
(This article belongs to the Special Issue Electrochemiluminescence Sensing and Detection System)
Show Figures

Figure 1

34 pages, 3827 KiB  
Review
An Overview of Recent Advances in the Synthesis and Applications of the Transition Metal Carbide Nanomaterials
by Saba Ahmad, Iffat Ashraf, Muhammad Adil Mansoor, Syed Rizwan and Mudassir Iqbal
Nanomaterials 2021, 11(3), 776; https://doi.org/10.3390/nano11030776 - 18 Mar 2021
Cited by 59 | Viewed by 6286
Abstract
Good stability and reproducibility are important factors in determining the place of any material in their respective field and these two factors also enable them to use in various applications. At present, transition metal carbides (TMCs) have high demand either in the two-dimensional [...] Read more.
Good stability and reproducibility are important factors in determining the place of any material in their respective field and these two factors also enable them to use in various applications. At present, transition metal carbides (TMCs) have high demand either in the two-dimensional (2D) form (MXene) or as nanocomposites, nanoparticles, carbide films, carbide nano-powder, and carbide nanofibers. They have shown good stability at high temperatures in different environments and also have the ability to show adequate reproducibility. Metal carbides have shown a broad spectrum of properties enabling them to engage the modern approach of multifacet material. Several ways have been routed to synthesize metal carbides in their various forms but few of those gain more attention due to their easy approach and better properties. TMCs find applications in various fields, such as catalysts, absorbents, bio-sensors, pesticides, electrogenerated chemiluminescence (ECL), anti-pollution and anti-bacterial agents, and in tumor detection. This article highlights some recent developments in the synthesis methods and applications of TMCs in various fields. Full article
(This article belongs to the Special Issue Carbon-Based Materials: Growth, Characterization, and Applications)
Show Figures

Figure 1

39 pages, 4639 KiB  
Review
Electrochemiluminescence Biosensors Using Screen-Printed Electrodes
by Emiliano Martínez-Periñán, Cristina Gutiérrez-Sánchez, Tania García-Mendiola and Encarnación Lorenzo
Biosensors 2020, 10(9), 118; https://doi.org/10.3390/bios10090118 - 9 Sep 2020
Cited by 54 | Viewed by 10779
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the [...] Read more.
Electrogenerated chemiluminescence (also called electrochemiluminescence (ECL)) has become a great focus of attention in different fields of analysis, mainly as a consequence of the potential remarkably high sensitivity and wide dynamic range. In the particular case of sensing applications, ECL biosensor unites the benefits of the high selectivity of biological recognition elements and the high sensitivity of ECL analysis methods. Hence, it is a powerful analytical device for sensitive detection of different analytes of interest in medical prognosis and diagnosis, food control and environment. These wide range of applications are increased by the introduction of screen-printed electrodes (SPEs). Disposable SPE-based biosensors cover the need to perform in-situ measurements with portable devices quickly and accurately. In this review, we sum up the latest biosensing applications and current progress on ECL bioanalysis combined with disposable SPEs in the field of bio affinity ECL sensors including immunosensors, DNA analysis and catalytic ECL sensors. Furthermore, the integration of nanomaterials with particular physical and chemical properties in the ECL biosensing systems has improved tremendously their sensitivity and overall performance, being one of the most appropriates research fields for the development of highly sensitive ECL biosensor devices. Full article
Show Figures

Figure 1

9 pages, 764 KiB  
Article
May Young Elite Cyclists Have Less Efficient Bone Metabolism?
by Marta Rapún-López, Hugo Olmedillas, Alejandro Gonzalez-Agüero, Alba Gomez-Cabello, Francisco Pradas de la Fuente, Luis A. Moreno, José A. Casajús and Germán Vicente-Rodríguez
Nutrients 2019, 11(5), 1178; https://doi.org/10.3390/nu11051178 - 26 May 2019
Cited by 5 | Viewed by 3887
Abstract
The purpose of this work was to describe changes in metabolic activity in the bones of young male competitive cyclists (CYC) as compared with age-matched controls (CON) over a one-year period of study. Eight adolescent male cyclists aged between fourteen and twenty, and [...] Read more.
The purpose of this work was to describe changes in metabolic activity in the bones of young male competitive cyclists (CYC) as compared with age-matched controls (CON) over a one-year period of study. Eight adolescent male cyclists aged between fourteen and twenty, and eight age-matched controls participated in this longitudinal study. Serum osteocalcin (OC), amino-terminal propeptide of type I procollagen (PINP), beta-isomerized C-telopeptides (β-CTx) and plasma 25 hydroxyvitamin D [25(OH)D], were investigated by an electrogenerated chemiluminescence immunoassay. Analysis of variance revealed no significant differences in formation and resorption markers between cyclists and controls. Within the groups, both CYC and CON showed decreased OC at −30% and −24%, respectively, and PINP where the figures were −28% and −30% respectively (all p < 0.05). However, only the CYC group showed a decrease in [25(OH)D], lower by 11% (p < 0.05). The similarity in the concentrations of markers in cyclists and controls seems to indicate that cycling does not modify the process of bone remodeling. The decrease in vitamin D in cyclists might be detrimental to their future bone health. Full article
(This article belongs to the Special Issue Calcium, Vitamin D and Health)
Show Figures

Figure 1

14 pages, 2664 KiB  
Review
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications
by Lin Wen, Liping Qiu, Yongxiang Wu, Xiaoxiao Hu and Xiaobing Zhang
Sensors 2017, 17(8), 1736; https://doi.org/10.3390/s17081736 - 28 Jul 2017
Cited by 57 | Viewed by 9805
Abstract
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of [...] Read more.
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. Full article
(This article belongs to the Special Issue Semiconductor Materials on Biosensors Application)
Show Figures

Figure 1

11 pages, 981 KiB  
Article
Electrochemical Light-Emitting Gel
by Nobuyuki Itoh
Materials 2010, 3(6), 3729-3739; https://doi.org/10.3390/ma3063729 - 19 Jun 2010
Cited by 39 | Viewed by 10614
Abstract
Light-emitting gel, a gel state electroluminescence material, is reported. It is composed of a ruthenium complex as the emitter, an ionic liquid as the electrolyte, and oxide nanoparticles as the gelation filler. Emitted light was produced via electrogenerated chemiluminescence. The light-emitting gel operated [...] Read more.
Light-emitting gel, a gel state electroluminescence material, is reported. It is composed of a ruthenium complex as the emitter, an ionic liquid as the electrolyte, and oxide nanoparticles as the gelation filler. Emitted light was produced via electrogenerated chemiluminescence. The light-emitting gel operated at low voltage when an alternating current was passed through it, regardless of its structure, which is quite thick. The luminescence property of the gel is strongly affected by nanoparticle materials. TiO2 nanoparticles were a better gelation filler than silica or ZnO was, with respect to luminescence stability, thus indicating a catalytic effect. It is demonstrated that the light-emitting gel device, with quite a simple fabrication process, flashes with the application of voltage. Full article
Show Figures

Graphical abstract

16 pages, 2663 KiB  
Communication
Development of an Electrogenerated Chemiluminescence Biosensor using Carboxylic acid-functionalized MWCNT and Au Nanoparticles
by Ming-Hua Piao, Dae-Soo Yang, Kuk-Ro Yoon, Seung-Ho Lee and Seong-Ho Choi
Sensors 2009, 9(3), 1662-1677; https://doi.org/10.3390/s90301662 - 9 Mar 2009
Cited by 23 | Viewed by 14908
Abstract
A COOH-F-MWCNT-Nafion-Ru(bpy)32+-Au-ADH electrogenerated chemi-luminescence (ECL)electrode using COOH-functionalized MWCNT (COOH-F-MWCNT) and Au nanoparticles synthesized by the radiation method was fabricated for ethanol sensing. A higher sensing efficiency for ethanol for the ECL biosensor prepared by PAAc-g-MWCNT was measured compared [...] Read more.
A COOH-F-MWCNT-Nafion-Ru(bpy)32+-Au-ADH electrogenerated chemi-luminescence (ECL)electrode using COOH-functionalized MWCNT (COOH-F-MWCNT) and Au nanoparticles synthesized by the radiation method was fabricated for ethanol sensing. A higher sensing efficiency for ethanol for the ECL biosensor prepared by PAAc-g-MWCNT was measured compared to that of the ECL biosensor prepared by PMAc-g-MWCNT, and purified MWCNT. Experimental parameters affecting ethanol detection were also examined in terms of pH and the content of PAAc-g-MWCNT in Nafion. Little interference of other compounds was observed for the assay of ethanol. Results suggest this ECL biosensor could be applied for ethanol detection in real samples. Full article
(This article belongs to the Special Issue Nanotechnological Advances in Biosensors)
Show Figures

22 pages, 718 KiB  
Review
Applications of Nanomaterials in Electrogenerated Chemiluminescence Biosensors
by Honglan Qi, Yage Peng, Qiang Gao and Chengxiao Zhang
Sensors 2009, 9(1), 674-695; https://doi.org/10.3390/s90100674 - 23 Jan 2009
Cited by 107 | Viewed by 16934
Abstract
Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. ECL biosensor, combining advantages offered by the selectivity of the biological recognition elements and the [...] Read more.
Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form excited states that emit light. ECL biosensor, combining advantages offered by the selectivity of the biological recognition elements and the sensitivity of ECL technique, is a powerful device for ultrasensitive biomolecule detection and quantification. Nanomaterials are of considerable interest in the biosensor field owing to their unique physical and chemical properties, which have led to novel biosensors that have exhibited high sensitivity and stability. Nanomaterials including nanoparticles and nanotubes, prepared from metals, semiconductor, carbon or polymeric species, have been widely investigated for their ability to enhance the efficiencies of ECL biosensors, such as taking as modification electrode materials, or as carrier of ECL labels and ECL-emitting species. Particularly useful application of nanomaterials in ECL biosensors with emphasis on the years 2004-2008 is reviewed. Remarks on application of nanomaterials in ECL biosensors are also surveyed. Full article
(This article belongs to the Special Issue Nanotechnological Advances in Biosensors)
Show Figures

19 pages, 197 KiB  
Review
Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials
by Sandra G. Hazelton, Xingwang Zheng, Julia Xiaojun Zhao and David T. Pierce
Sensors 2008, 8(9), 5942-5960; https://doi.org/10.3390/s8095942 - 25 Sep 2008
Cited by 26 | Viewed by 14105
Abstract
A variety of recent developments and applications of electrogenerated chemiluminescence (ECL) for sensors are described. While tris(2,2′-bipyridyl)-ruthenium(II) and luminol have dominated and continue to pervade the field of ECL-based sensors, recent work has focused on use of these lumophores with micro- and nanomaterials. [...] Read more.
A variety of recent developments and applications of electrogenerated chemiluminescence (ECL) for sensors are described. While tris(2,2′-bipyridyl)-ruthenium(II) and luminol have dominated and continue to pervade the field of ECL-based sensors, recent work has focused on use of these lumophores with micro- and nanomaterials. It has also extended to inherently luminescent nanomaterials, such as quantum dots. Sensor configurations including microelectrode arrays and microfluidics are reviewed and, with the recent trend toward increased use of nanomaterials, special attention has been given to sensors which include thin films, nanoparticles and nanotubes. Applications of ECL labels and examples of label-free sensing that incorporate nanomaterials are also discussed. Full article
Show Figures

Back to TopTop