Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = electro-chemo-mechanical coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3757 KB  
Article
Microstructure-Dependent Macroscopic Electro-Chemo- Mechanical Behaviors of Li-Ion Battery Composite Electrodes
by Ying Zhao, Zhongli Ge and Zongli Chen
Energies 2024, 17(18), 4607; https://doi.org/10.3390/en17184607 - 13 Sep 2024
Cited by 2 | Viewed by 1364
Abstract
The rapid development of the electric vehicle industry has created an urgent need for high-performance Li-ion batteries. Such demand not only requires the development of novel active materials but also requires optimized microstructure of composite electrodes. However, due to complicated heterogeneous electrode microstructure, [...] Read more.
The rapid development of the electric vehicle industry has created an urgent need for high-performance Li-ion batteries. Such demand not only requires the development of novel active materials but also requires optimized microstructure of composite electrodes. However, due to complicated heterogeneous electrode microstructure, there still lacks a relationship between the electrode microstructure and the macroscopic electro-chemo-mechanical performance of the battery. In this study, electrochemical and mechanical multi-scale models are developed in order to account for the influence of the heterogeneous microstructure on the macroscopic mechanical and electrochemical behavior of the battery. It is found that porosity and particle size are two important parameters to characterize the microstructure that can affect the macroscopic mechanical and electrochemical behavior. The models developed in this study can be served as designing guidelines for the optimization for the Li-ion battery composite electrodes. Full article
(This article belongs to the Special Issue Electrochemical Conversion and Energy Storage System)
Show Figures

Figure 1

13 pages, 3934 KB  
Article
Experimental and Modeling Analysis of Mechanical Response of Composite Electrodes in Lithium Batteries
by Zheru Shen, Zhiyao Jin, Yaolong He and Dawei Li
Molecules 2024, 29(14), 3316; https://doi.org/10.3390/molecules29143316 - 14 Jul 2024
Cited by 1 | Viewed by 1598
Abstract
The mechanical response is one of the main factors that influence the capacity and number of cycles of lithium batteries, which hinder its wide application. Therefore, it is crucial to perform an in-depth investigation of the electro-chemo-mechanical coupling performance and work mechanism of [...] Read more.
The mechanical response is one of the main factors that influence the capacity and number of cycles of lithium batteries, which hinder its wide application. Therefore, it is crucial to perform an in-depth investigation of the electro-chemo-mechanical coupling performance and work mechanism of battery electrodes during the electrochemical reaction process. Usually, graphite is the main active material used in commercially used batteries, while silicon is gaining worldwide attention because of its large energy density. Here, graphite and silicon composite electrodes were prepared to obtain the electro-chemo-mechanical response during electrochemical cycling by an in situ bending deformation measurement. The findings indicate that the composite electrodes could induce a large bending deformation, with an increase in the state of charge (C-rate). And, with an increase in the C-rate, the deformation degree of the silicon composite electrode increases, while that of the graphite composite electrode decreases due to the hardening properties of the graphite particles. In addition, increasing the thickness ratio could induce an increase in the peak stress for both composite electrodes. This work gives a detailed analysis of the mechanical properties of composite electrodes and finds the working mechanism of the C-rate and thickness ratio, which can supply suggestions for the development of high-performance batteries. Full article
(This article belongs to the Special Issue Lithium Battery Materials: Developments and Perspectives)
Show Figures

Figure 1

17 pages, 31437 KB  
Article
3D Heterogeneous Model for Electrodes in Lithium-Ion Batteries to Study Interfacial Detachment of Active Material Particles and Carbon-Binder Domain
by Mohammadali Mirsalehian, Bahareh Vossoughi, Jörg Kaiser and Stefan Pischinger
Energies 2023, 16(21), 7391; https://doi.org/10.3390/en16217391 - 1 Nov 2023
Cited by 1 | Viewed by 3081
Abstract
Mechanics plays a crucial role in the performance and lifespan of lithium-ion battery (LIB) cells. Thus, it is important to address the interplay between electrochemistry and mechanics in LIBs, especially when aiming to enhance the energy density of electrodes. Accordingly, this work introduces [...] Read more.
Mechanics plays a crucial role in the performance and lifespan of lithium-ion battery (LIB) cells. Thus, it is important to address the interplay between electrochemistry and mechanics in LIBs, especially when aiming to enhance the energy density of electrodes. Accordingly, this work introduces a framework for a fully coupled electro-chemo-mechanical heterogeneous 3D model that allows resolving the inhomogeneities accompanied by electrochemical and mechanical responses of LIB electrodes during operation. The model is employed to numerically study the mechanical degradation of a nickel manganese cobalt (NMC) cathode electrode, assembled in a half-cell, upon cycling. As opposed to previous works, a virtual morphology for a high-energy electrode with low porosity is developed in this study, which comprises distinct domains of active material (AM) particles, the carbon-binder domain (CBD), and the pore domain to resemble real commercial electrodes. It is observed that the mechanical strain mismatch between irregularly and randomly positioned AM particles and the CBD might lead to local contact detachment. This interfacial gap, in combination with the diminishing contact strength over cell cycling, continuously deteriorates the electrode performance upon cycling by impedance rise and capacity drop. In agreement with previous experimental reports, the presented simulation results exhibit that the contact loss mostly takes place in the regions closer to the separator. Eventually, the resulting gradual capacity drop and change in impedance spectrum over cycling, as the consequence of interfacial gap formation, are discussed and indicated. Full article
(This article belongs to the Special Issue Battery Modelling, Applications, and Technology)
Show Figures

Figure 1

17 pages, 16693 KB  
Article
Self-Standing 3D-Printed PEGDA–PANIs Electroconductive Hydrogel Composites for pH Monitoring
by Rocco Carcione, Francesca Pescosolido, Luca Montaina, Francesco Toschi, Silvia Orlanducci, Emanuela Tamburri and Silvia Battistoni
Gels 2023, 9(10), 784; https://doi.org/10.3390/gels9100784 - 26 Sep 2023
Cited by 9 | Viewed by 2373
Abstract
Additive manufacturing (AM), or 3D printing processes, is introducing new possibilities in electronic, biomedical, sensor-designing, and wearable technologies. In this context, the present work focuses on the development of flexible 3D-printed polyethylene glycol diacrylate (PEGDA)- sulfonated polyaniline (PANIs) electrically conductive hydrogels (ECHs) for [...] Read more.
Additive manufacturing (AM), or 3D printing processes, is introducing new possibilities in electronic, biomedical, sensor-designing, and wearable technologies. In this context, the present work focuses on the development of flexible 3D-printed polyethylene glycol diacrylate (PEGDA)- sulfonated polyaniline (PANIs) electrically conductive hydrogels (ECHs) for pH-monitoring applications. PEGDA platforms are 3D printed by a stereolithography (SLA) approach. Here, we report the successful realization of PEGDA–PANIs electroconductive hydrogel (ECH) composites produced by an in situ chemical oxidative co-polymerization of aniline (ANI) and aniline 2-sulfonic acid (ANIs) monomers at a 1:1 equimolar ratio in acidic medium. The morphological and functional properties of PEGDA–PANIs are compared to those of PEGDA–PANI composites by coupling SEM, swelling degree, I–V, and electro–chemo–mechanical analyses. The differences are discussed as a function of morphological, structural, and charge transfer/transport properties of the respective PANIs and PANI filler. Our investigation showed that the electrochemical activity of PANIs allows for the exploitation of the PEGDA–PANIs composite as an electrode material for pH monitoring in a linear range compatible with that of most biofluids. This feature, combined with the superior electromechanical behavior, swelling capacity, and water retention properties, makes PEGDA–PANIs hydrogel a promising active material for developing advanced biomedical, soft tissue, and biocompatible electronic applications. Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
Show Figures

Graphical abstract

14 pages, 4318 KB  
Article
Finite Deformation of Scleral Tissue under Electrical Stimulation: An Arbitrary Lagrangian-Eulerian Finite Element Method
by Jafar Arash Mehr and Hamed Hatami-Marbini
Bioengineering 2023, 10(8), 920; https://doi.org/10.3390/bioengineering10080920 - 3 Aug 2023
Cited by 1 | Viewed by 1790
Abstract
The sclera is considered as the principal load-bearing tissue within the eye. The sclera is negatively charged; thus, it exhibits mechanical response to electrical stimulation. We recently demonstrated the electroactive behavior of sclera by performing experimental measurements that captured the deformation of the [...] Read more.
The sclera is considered as the principal load-bearing tissue within the eye. The sclera is negatively charged; thus, it exhibits mechanical response to electrical stimulation. We recently demonstrated the electroactive behavior of sclera by performing experimental measurements that captured the deformation of the tip of scleral strips subjected to electric voltage. We also numerically analyzed the electromechanical response of the tissue using a chemo-electro-mechanical model. In the pre-sent study, we extended our previous work by experimentally characterizing the deformation profile of scleral strips along their length under electrical stimulation. In addition, we improved our previous mathematical model such that it could numerically capture the large deformation of samples. For this purpose, we considered the transient variability of the fixed charge density and the coupling between mechanical and chemo-electrical phenomena. These improvements in-creased the accuracy of the computational model, resulting in a better numerical representation of experimentally measured bending angles. Full article
(This article belongs to the Special Issue Multiscale Modeling in Computational Biomechanics)
Show Figures

Figure 1

16 pages, 7181 KB  
Article
Thermo-Electro-Chemo-Mechanical Coupled Modeling of Solid Oxide Fuel Cell with LSCF-GDC Composite Cathode
by Weiqiang Cai, Qingrong Zheng, Jinliang Yuan, Wanneng Yu, Zibin Yin, Yu Wu and Zhonggang Zhang
Int. J. Mol. Sci. 2023, 24(4), 4137; https://doi.org/10.3390/ijms24044137 - 18 Feb 2023
Cited by 7 | Viewed by 3802
Abstract
Intricate relationships between transport phenomena, reaction mechanisms, and mechanical aspects likely affect the durability of solid oxide fuel cell (SOFC) stack. This study presents a modeling framework that combines thermo-electro-chemo models (including the methanol conversion process and the electrochemical reactions of the carbon [...] Read more.
Intricate relationships between transport phenomena, reaction mechanisms, and mechanical aspects likely affect the durability of solid oxide fuel cell (SOFC) stack. This study presents a modeling framework that combines thermo-electro-chemo models (including the methanol conversion process and the electrochemical reactions of the carbon monoxide as well as the hydrogen) and a contact thermo-mechanical model that considers the effective mechanical properties of composite electrode material. Detailed parametric studies are performed focusing on the inlet fuel species (hydrogen, methanol syngas) and flow arrangements (co-flow, counter-flow) under typical operating conditions (operating voltage 0.7 V), and performance indicators of the cell, such as the high-temperature zone, current density, and maximum thermal stress were discussed for parameter optimization. The simulated results show that the high temperature zone of the hydrogen-fueled SOFC is located at the central part of units 5, 6, and 7, and the maximum value is about 40 K higher than that of methanol syngas-fueled SOFC. The charge transfer reactions can occur throughout the cathode layer. The counter-flow improves the trend of the current density distribution of hydrogen-fueled SOFC, while the effect on the current density distribution of methanol syngas-fueled SOFC is small. The distribution characteristics of the stress field within SOFC are extremely complex, and the inhomogeneity of the stress field distribution can be effectively improved by feeding methanol syngas. The counter-flow improves the stress distribution state of the electrolyte layer of methanol syngas-fueled SOFC, and the maximum tensile stress value is reduced by about 37.7%. Full article
Show Figures

Figure 1

11 pages, 3803 KB  
Article
Diffusion-Induced Stress in Commercial Graphite Electrodes during Multiple Cycles Measured by an In Situ Method
by Dawei Li, Guanglin Zhu, Huibing Liu and Yikai Wang
Micromachines 2022, 13(1), 142; https://doi.org/10.3390/mi13010142 - 17 Jan 2022
Cited by 11 | Viewed by 3385
Abstract
The cyclic stress evolution induced by repeated volume variation causes mechanical degradation and damage to electrodes, resulting in reduced performance and lifetime of LIBs. To probe the electro-chemo-mechanical coupled degradation, we conducted in situ measurements of Young’s modulus and stress evolution of commercial [...] Read more.
The cyclic stress evolution induced by repeated volume variation causes mechanical degradation and damage to electrodes, resulting in reduced performance and lifetime of LIBs. To probe the electro-chemo-mechanical coupled degradation, we conducted in situ measurements of Young’s modulus and stress evolution of commercial used graphite electrodes during multiple cycles. A bilayer graphite electrode cantilever is cycled galvanostatically in a custom cell, while the bending deformation of the bilayer electrode is captured by a CCD optical system. Combined with a mechanical model, Li-concentration-dependent elastic modulus and stress are derived from the curvature of the cantilever electrode. The results show that modulus, stress and strain all increase with the lithium concentration, and the stress transforms from compression to tension in the thickness direction. During multiple cycles, the modulus decreases with an increase in the cycle number at the same concentration. The maximum stress/strain of each cycle is maintained at almost same level, exhibiting a threshold that results from the co-interaction of concentration and damage. These findings provide basic information for modeling the degradation of LIBs. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Materials and Processing 2021)
Show Figures

Figure 1

54 pages, 12220 KB  
Review
A Review of Experimentally Informed Micromechanical Modeling of Nanoporous Metals: From Structural Descriptors to Predictive Structure–Property Relationships
by Claudia Richert and Norbert Huber
Materials 2020, 13(15), 3307; https://doi.org/10.3390/ma13153307 - 24 Jul 2020
Cited by 26 | Viewed by 4802
Abstract
Nanoporous metals made by dealloying take the form of macroscopic (mm- or cm-sized) porous bodies with a solid fraction of around 30%. The material exhibits a network structure of “ligaments” with an average ligament diameter that can be adjusted between 5 and 500 [...] Read more.
Nanoporous metals made by dealloying take the form of macroscopic (mm- or cm-sized) porous bodies with a solid fraction of around 30%. The material exhibits a network structure of “ligaments” with an average ligament diameter that can be adjusted between 5 and 500 nm. Current research explores the use of nanoporous metals as functional materials with respect to electrochemical conversion and storage, bioanalytical and biomedical applications, and actuation and sensing. The mechanical behavior of the network structure provides the scope for fundamental research, particularly because of the high complexity originating from the randomness of the structure and the challenges arising from the nanosized ligaments, which can be accessed through an experiment only indirectly via the testing of the macroscopic properties. The strength of nanoscale ligaments increases systematically with decreasing size, and owing to the high surface-to-volume ratio their elastic and plastic properties can be additionally tuned by applying an electric potential. Therefore, nanoporous metals offer themselves as suitable model systems for exploring the structure–property relationships of complex interconnected microstructures as well as the basic mechanisms of the chemo-electro-mechanical coupling at interfaces. The micromechanical modeling of nanoporous metals is a rapidly growing field that strongly benefits from developments in computational methods, high-performance computing, and visualization techniques; it also benefits at the same time through advances in characterization techniques, including nanotomography, 3D image processing, and algorithms for geometrical and topological analysis. The review article collects articles on the structural characterization and micromechanical modeling of nanoporous metals and discusses the acquired understanding in the context of advancements in the experimental discipline. The concluding remarks are given in the form of a summary and an outline of future perspectives. Full article
(This article belongs to the Special Issue Micromechanics: Experiment, Modeling and Theory)
Show Figures

Figure 1

Back to TopTop