Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (194)

Search Parameters:
Keywords = electrically conductive hydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4639 KiB  
Article
CNTs/CNPs/PVA–Borax Conductive Self-Healing Hydrogel for Wearable Sensors
by Chengcheng Peng, Ziyan Shu, Xinjiang Zhang and Cailiu Yin
Gels 2025, 11(8), 572; https://doi.org/10.3390/gels11080572 - 23 Jul 2025
Viewed by 285
Abstract
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This [...] Read more.
The development of multifunctional conductive hydrogels with rapid self-healing capabilities and powerful sensing functions is crucial for advancing wearable electronics. This study designed and prepared a polyvinyl alcohol (PVA)–borax hydrogel incorporating carbon nanotubes (CNTs) and biomass carbon nanospheres (CNPs) as dual-carbon fillers. This hydrogel exhibits excellent conductivity, mechanical flexibility, and self-recovery properties. Serving as a highly sensitive piezoresistive sensor, it efficiently converts mechanical stimuli into reliable electrical signals. Sensing tests demonstrate that the CNT/CNP/PVA–borax hydrogel sensor possesses an extremely fast response time (88 ms) and rapid recovery time (88 ms), enabling the detection of subtle and rapid human motions. Furthermore, the hydrogel sensor also exhibits outstanding cyclic stability, maintaining stable signal output throughout continuous loading–unloading cycles exceeding 3200 repetitions. The hydrogel sensor’s characteristics, including rapid self-healing, fast-sensing response/recovery, and high fatigue resistance, make the CNT/CNP/PVA–borax conductive hydrogel an ideal choice for multifunctional wearable sensors. It successfully monitored various human motions. This study provides a promising strategy for high-performance self-healing sensing devices, suitable for next-generation wearable health monitoring and human–machine interaction systems. Full article
Show Figures

Figure 1

15 pages, 2284 KiB  
Article
O2-Generated Electrical and Mechanical Properties of Polyphenol-Mediated Hydrogel Sensor
by Sunu Hangma Subba, A Hyeon Kim, Anneshwa Dey, Byung Chan Lee and Sung Young Park
Gels 2025, 11(8), 566; https://doi.org/10.3390/gels11080566 - 22 Jul 2025
Viewed by 196
Abstract
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl [...] Read more.
The tumor microenvironment contains distinctive biomarkers, including acidic pH, elevated levels of reactive oxygen species (ROS), and hypoxia, necessitating the development of efficient biosensors for simplified cancer detection. This study presents an O2-responsive hydrogel biosensor composed of [1,1′-biphenyl]-2,2′,4,4′,5,5′-hexaol (HDP) and polyvinyl alcohol (PVA) that exploits polyphenol-mediated interactions under N2 and O2 microenvironments. The oxidative susceptibility of the polyphenolic HDP moiety influences its distinct mechanical, physical, and electrochemical properties, allowing the differentiation between cancerous and normal cells. The in vitro assessments with cancer cell lines (HeLa and B16F10) and normal cell lines (CHO-K1) enabled distinctive electrical and mechanophysical outputs, as evidenced by enhanced mechanical compressive modulus and high conductivity, regulated by normoxic cellular states. In addition, the inherent ROS-scavenging capability of the HDP–PVA hydrogel sensor supports its potential application in hypoxia-related diseases, including cancer. Full article
Show Figures

Figure 1

11 pages, 2217 KiB  
Article
One-Pot Improvement of Stretchable PEDOT/PSS Alginate Conductivity for Soft Sensing Biomedical Processes
by Somayeh Zanganeh, Alberto Ranier Escobar, Hung Cao and Peter Tseng
Processes 2025, 13(7), 2173; https://doi.org/10.3390/pr13072173 - 8 Jul 2025
Viewed by 370
Abstract
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically [...] Read more.
Hydrogels have immense potential in soft electronics due to their similarity to biological tissues. However, for applications in fields like tissue engineering and wearable electronics, hydrogels must obtain electrical conductivity, stretchability, and implantability. This article explores recent advancements in the development of electrically conductive hydrogel composites with high conductivity, low Young’s modulus, and remarkable stretchability. By incorporating conductive particles into hydrogels, such as poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT/PSS) researchers have enhanced their conductivity. This study presents a one-pot synthesis method for creating electrically conductive hydrogel composites by combining PEDOT/PSS with alginate. The hydrogel reveals changes in chemical composition upon treatment with dimethyl sulfoxide (DMSO). Additionally, surface morphology analysis via Field Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) demonstrate the impact of DMSO treatment on PEDOT/PSS/alginate films. Furthermore, electrical conductivity measurements highlighted the effectiveness of the conductive hydrogels in Electromyography (EMG) and human motion detection. This study offers insights into the fabrication and characterization of stretchable, conductive hydrogels, advancing their potential for various soft sensing biomedical applications. The optimized PDOT/PSS/alginate composite under dry condition shows a conductivity of 0.098 S/cm and can be stretched without significant loss in conductivity or mechanical stability. This one-pot method provides a simple and effective way to improve the properties of conductive hydrogel-based sensors. Full article
Show Figures

Figure 1

15 pages, 2628 KiB  
Article
High Anti-Swelling Zwitterion-Based Hydrogel with Merit Stretchability and Conductivity for Motion Detection and Information Transmission
by Qingyun Zheng, Jingyuan Liu, Rongrong Chen, Qi Liu, Jing Yu, Jiahui Zhu and Peili Liu
Nanomaterials 2025, 15(13), 1027; https://doi.org/10.3390/nano15131027 - 2 Jul 2025
Viewed by 426
Abstract
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor [...] Read more.
Hydrogel sensors show unique advantages in underwater detection, ocean monitoring, and human–computer interaction because of their excellent flexibility, biocompatibility, high sensitivity, and environmental adaptability. However, due to the water environment, hydrogels will dissolve to a certain extent, resulting in insufficient mechanical strength, poor long-term stability, and signal interference. In this paper, a double-network structure was constructed by polyvinyl alcohol (PVA) and poly([2-(methacryloyloxy) ethyl]7 dimethyl-(3-sulfopropyl) ammonium hydroxide) (PSBMA). The resultant PVA/PSBMA-PA hydrogel demonstrated notable swelling resistance, a property attributable to the incorporation of non-covalent interactions (electrostatic interactions and hydrogen bonding) through the addition of phytic acid (PA). The hydrogel exhibited high stretchability (maximum tensile strength up to 304 kPa), high conductivity (5.8 mS/cm), and anti-swelling (only 1.8% swelling occurred after 14 days of immersion in artificial seawater). Assembled as a sensor, it exhibited high strain sensitivity (0.77), a low detection limit (1%), and stable electrical properties after multiple tensile cycles. The utilization of PVA/PSBMA-PA hydrogel as a wearable sensor shows promise for detecting human joint movements, including those of the fingers, wrists, elbows, and knees. Due to the excellent resistance to swelling, the PVA/PSBMA-PA-based sensors are also suitable for underwater applications, enabling the detection of underwater mannequin motion. This study proposes an uncomplicated and pragmatic methodology for producing hydrogel sensors suitable for use within subaquatic environments, thereby concomitantly broadening the scope of applications for wearable electronic devices. Full article
(This article belongs to the Special Issue Nanomaterials in Flexible Sensing and Devices)
Show Figures

Figure 1

31 pages, 9815 KiB  
Article
Development of Covalently Functionalized Alginate–Pyrrole and Polypyrrole–Alginate Nanocomposites as 3D Printable Electroconductive Bioinks
by Abraham Abbey Paul, Olga Kryukov, Anil Kumar Bandela, Hamody Muadi, Nurit Ashkenasy, Smadar Cohen and Robert S. Marks
Materials 2025, 18(13), 3120; https://doi.org/10.3390/ma18133120 - 1 Jul 2025
Viewed by 473
Abstract
Electrically conductive hydrogels are gaining attention owing to their applications in biosensing, cellular interfaces, and tissue engineering. However, conventional hydrogels often lack adequate electrical conductivities. Here, we present two novel conductive alginate-based hydrogels designed for extrusion-based 3D bioprinting: (i) covalently synthesized alginate–polypyrrole (alginate–PPy) [...] Read more.
Electrically conductive hydrogels are gaining attention owing to their applications in biosensing, cellular interfaces, and tissue engineering. However, conventional hydrogels often lack adequate electrical conductivities. Here, we present two novel conductive alginate-based hydrogels designed for extrusion-based 3D bioprinting: (i) covalently synthesized alginate–polypyrrole (alginate–PPy) via EDC/NHS-mediated conjugation with 3-aminopropyl pyrrole, and (ii) nanoparticle-reinforced alginate blended with polypyrrole nanoparticles (alginate@PPy-NP). Both systems exhibited shear-thinning behavior, tunable viscoelasticity, and excellent printability. Alginate@PPy-NP demonstrated superior compressive strength and shape fidelity, whereas alginate–PPy showed enhanced elastic moduli (G′/G″), reflecting a more uniform gel network. Electrical conductivity increased with increasing pyrrole content in both formulations. Optimization of the composition and printing conditions enabled the fabrication of fibroblast-laden constructs with high structural integrity. This work highlights the potential of alginate–polypyrrole hydrogels as customizable, conductive bioinks for 3D bioprinting in regenerative medicine. Full article
(This article belongs to the Special Issue Advances in 3D Printing for Biomaterials)
Show Figures

Figure 1

18 pages, 2992 KiB  
Article
The Influence of Concentration and Type of Salts on the Behaviour of Linear Actuators Based on PVA Hydrogel Activated by AC Power
by Aleksey Maksimkin, Mikhail Zadorozhnyy, Kseniia V. Filippova, Lidiia D. Iudina, Dmitry V. Telyshev and Tarek Dayyoub
Gels 2025, 11(7), 484; https://doi.org/10.3390/gels11070484 - 23 Jun 2025
Viewed by 758
Abstract
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. [...] Read more.
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. However, several important questions arise about how the type of salt chosen and its concentration will affect not only the activation efficiency of the actuators but also the structure of the hydrogels utilized. In this study, to enhance the electrical conductivity of the hydrogel and lower the necessary activation voltage of the hydrogel actuators, lithium chloride (LiCl) and sodium chloride (NaCl) were incorporated as conductive fillers into the polyvinyl alcohol (PVA) polymer matrix. To determine the deformation of actuators, as well as the activation and relaxation times and efficiencies during activation, linear actuators capable of being activated through extension/contraction (swelling/shrinking) cycles were developed and examined based on the LiCl/NaCl content, applied voltage, and frequency. The main finding is that the required actuating voltage was lowered by up to 20 V by adding an equal mass of salt in relation to the PVA mass content. With a load of around 20 kPa, it was observed that the extension deformation for PVA/NaCl-based actuators can achieve 75%, while in contraction deformation, can reach 17%. Additionally, for the PVA/LiCl-based actuators, the extension deformation can reach 87%, while during contraction deformation, it can reach 22%. The degree of swelling in the PVA/NaCl hydrogels was generally less than that in the PVA/LiCl hydrogels, which was associated with the finding that the actuators prepared from PVA/NaCl hydrogels delivered an output that was 10–15% lower than those made from PVA/LiCl hydrogels across different testing cycles. Furthermore, adding salt increases the degree of crosslinking, which can explain why increased crosslinking leads to reduced deformation when exposed to AC voltage. These actuators can find extensive use in soft robotics, artificial muscles, medical applications, and aerospace industries. Full article
Show Figures

Figure 1

21 pages, 4352 KiB  
Review
Single- and Multi-Network Hydrogels for Soft Electronics—A Review
by Md Murshed Bhuyan, Nahid Hasan and Jae-Ho Jeong
Gels 2025, 11(7), 480; https://doi.org/10.3390/gels11070480 - 21 Jun 2025
Viewed by 477
Abstract
Soft or flexible electronics is a rapidly growing and pioneering research field, as it makes devices comfortable to use, especially in biomedical engineering. Both single- and multi-network hydrogels have diverse applications where the most significant one is in the building of soft electronics, [...] Read more.
Soft or flexible electronics is a rapidly growing and pioneering research field, as it makes devices comfortable to use, especially in biomedical engineering. Both single- and multi-network hydrogels have diverse applications where the most significant one is in the building of soft electronics, including soft circuits, displays, sensors, batteries, and supercapacitors, electronic storage, electric skin, health monitoring devices, soft robots, and automotive. Three-dimensional printing of conductive gels/hydrogels facilitates the construction of soft electronics. This review illustrates the design, mechanism, and application of hydrogel in soft electronics. The current progress, scope of improvement, and future prospects of hydrogel-based soft electronics are also discussed. This review will provide a clear concept of the topic to researchers. Full article
(This article belongs to the Special Issue Functional Hydrogels for Soft Electronics and Robotic Applications)
Show Figures

Graphical abstract

19 pages, 3763 KiB  
Article
Elaboration of Conductive Hydrogels by 3D Printer for the Development of Strain Sensors
by Lucas Carravero Costa, Isabelle Pochard, Cédric C. Buron and Florian E. Jurin
Gels 2025, 11(7), 474; https://doi.org/10.3390/gels11070474 - 20 Jun 2025
Viewed by 433
Abstract
The development of biocompatible, conductive hydrogels via direct ink writing (DIW) has gained increasing attention for strain sensor applications. In this work, a hydrogel matrix composed of polyvinyl alcohol (PVA) and κ-carrageenan (KC) was formulated and enhanced with polyvinylidene fluoride (PVDF) and silver [...] Read more.
The development of biocompatible, conductive hydrogels via direct ink writing (DIW) has gained increasing attention for strain sensor applications. In this work, a hydrogel matrix composed of polyvinyl alcohol (PVA) and κ-carrageenan (KC) was formulated and enhanced with polyvinylidene fluoride (PVDF) and silver nanoparticles (AgNPs) to impart piezoelectric properties. The ink formulation was optimized to achieve shear-thinning and thixotropic recovery behavior, ensuring printability through extrusion-based 3D printing. The resulting hydrogels exhibited high water uptake (~280–300%) and retained mechanical integrity. Rheological assessments showed that increasing PVDF content improved stiffness without compromising printability. Electrical characterization demonstrated that AgNPs were essential for generating piezoelectric signals under mechanical stress, as PVDF alone was insufficient. While AgNPs did not significantly alter the crystalline phase distribution of PVDF, they enhanced conductivity and signal responsiveness. XRD and SEM-EDX analyses confirmed the presence and uneven distribution of AgNPs within the hydrogel. The optimized ink formulation (5% PVA, 0.94% KC, 6% PVDF) enabled the successful fabrication of functional sensors, highlighting the material’s strong potential for use in wearable or biomedical strain-sensing applications. Full article
(This article belongs to the Special Issue Hydrogel-Based Flexible Electronics and Devices)
Show Figures

Figure 1

20 pages, 11096 KiB  
Article
Characterization of the Mechanical Behavior and Stabilization Mechanism of Soft Soil Treated with Xanthan Gum Biopolymer
by Qian-Feng Gao, Xue-Ke Shi, Ling Zeng, Hui-Cong Yu and Jun-Xia Hu
Polymers 2025, 17(11), 1532; https://doi.org/10.3390/polym17111532 - 30 May 2025
Viewed by 475
Abstract
Soft soil poses significant challenges in highway engineering due to its low strength and high compressibility. This study proposes using xanthan gum biopolymer as an environmentally friendly agent to improve the mechanical behavior of soft soil. Laboratory tests were conducted to analyze the [...] Read more.
Soft soil poses significant challenges in highway engineering due to its low strength and high compressibility. This study proposes using xanthan gum biopolymer as an environmentally friendly agent to improve the mechanical behavior of soft soil. Laboratory tests were conducted to analyze the unconfined compressive strength (UCS) and compressibility of xanthan-gum-stabilized soft soil under dry–wet cycles. Physicochemical analysis was performed to examine the pH value, electrical conductivity, and total dissolved solids (TDS) of the stabilized soil. Additionally, microscopic tests were performed to investigate the stabilization mechanism. The results demonstrate that the UCS of the stabilized soil consistently increases with curing age while it decreases under dry–wet cycles. Moreover, the UCS, durability, and modulus of compressibility of the stabilized soil initially increase significantly and then slightly decrease with increasing xanthan gum dosage. At the optimal xanthan gum dosage (1.5%), the UCS reaches 376.3 kPa at 28 d of curing and drops by only 24.1% even after ten dry–wet cycles, and the modulus of compressibility is enhanced to 37.13 MPa; meanwhile, the corresponding compression index and coefficient of compressibility are reduced to 0.082 and 0.061 MPa−1, respectively, indicating satisfactory performance of the stabilized soil as highway foundation material. The stabilization mechanism of xanthan-gum-treated soft soil primarily involves the bonding and filling effects of the hydrogel resulting from the hydration of xanthan gum. These findings suggest that xanthan gum is a promising and effective stabilizing agent for soft soil as it can significantly reduce soil water content and void ratio. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 2662 KiB  
Article
Study of Printable and Biocompatible Alginate–Carbon Hydrogels for Sensor Applications: Mechanical, Electrical, and Cytotoxicity Evaluation
by Laura Mendoza-Cerezo, Jesús M. Rodríguez-Rego, A. Macias-García, Francisco de Asís Iñesta-Vaquera and Alfonso C. Marcos-Romero
Gels 2025, 11(6), 389; https://doi.org/10.3390/gels11060389 - 26 May 2025
Viewed by 670
Abstract
The development of printable, conductive, and biocompatible hydrogels has emerged as a promising strategy for the next generation of flexible and soft sensor platforms. In this study, we present a systematic investigation of alginate-based hydrogels incorporating different carbonaceous materials, natural graphite, carbon black [...] Read more.
The development of printable, conductive, and biocompatible hydrogels has emerged as a promising strategy for the next generation of flexible and soft sensor platforms. In this study, we present a systematic investigation of alginate-based hydrogels incorporating different carbonaceous materials, natural graphite, carbon black (Vulcan V3), and activated carbon (PCO1000C), to evaluate their suitability for sensor applications. Hydrogels were formulated with varying concentrations of sodium alginate and a fixed loading of carbon additives. Each composite was characterized in terms of electrical conductivity under compression, rheological behavior, and mechanical strength. Printability was assessed using a custom-designed extrusion platform that allowed for the precise determination of the minimum force and optimal conditions required to extrude each formulation through a standard 20G nozzle. Among all tested systems, the alginate–graphite hydrogel demonstrated superior extrudability, shear-thinning behavior, and shape fidelity, making it well-suited for 3D printing or direct ink writing. A simple conductivity-testing device was developed to verify the electrical response of each hydrogel in the hydrated state. The effects of different drying methods on the final conductivity were also analyzed, showing that oven drying at 50 °C yielded the highest restoration of conductive pathways. Mechanical tests on printed structures confirmed their ability to maintain shape and resist compressive forces. Finally, the biocompatibility of the printed alginate–graphite hydrogel was validated using a standard cytotoxicity assay. The results demonstrated high cell viability, confirming the material’s potential for use in biomedical sensing environments. This work offers a robust framework for the development of sustainable, printable, and biocompatible conductive hydrogels. The combined performance in printability, mechanical integrity, electrical conductivity, and cytocompatibility highlights their promise for flexible biosensors and wearable sensor technologies. Full article
(This article belongs to the Special Issue Polymer Gels for Sensor Applications)
Show Figures

Graphical abstract

15 pages, 5050 KiB  
Article
Conductive Hydrogel Motion Sensor with Low-Temperature Stability for Winter Sports and Sensing Rescue
by Wei Li, Yang Ming, Libing Yang, Yimeng Ni, Yu Chen, Weidong Xu, Lefei Li, Chan Zheng and Wanyang Lin
Polymers 2025, 17(10), 1365; https://doi.org/10.3390/polym17101365 - 16 May 2025
Viewed by 636
Abstract
Hydrogels with conductive properties hold significant promise in the realm of flexible electronics, owing to their pliability, outstanding conductivity, and diverse functionalities. Nevertheless, the majority of conductive hydrogels are prone to being brittle and easily damaged; as such, they are not adapt to [...] Read more.
Hydrogels with conductive properties hold significant promise in the realm of flexible electronics, owing to their pliability, outstanding conductivity, and diverse functionalities. Nevertheless, the majority of conductive hydrogels are prone to being brittle and easily damaged; as such, they are not adapt to cold environments, which seriously hinders their practical applications. Therefore, hydrogels that possess both conductivity and anti-freezing, as well as moisturizing, capabilities have garnered considerable interest, and these hydrogels can work stably in harsh environments. Phytic acid (PA), which mainly exists in plant seeds, is a kind of natural compound widely existing in nature that can be recycled; it provides electrical conductivity and anti-freezing to hydrogels. Here, a highly conductive hydrogel with excellent anti-freezing and moisturizing capabilities was prepared by incorporating PA into a polyacrylamide/gelatin hydrogel. The incorporation of PA endowed the hydrogel with an excellent conductivity of 5.8 S·cm−1. In addition, robust hydrogen bonding was formed between water and phytic acid molecules, and the hydrogel demonstrated remarkable anti-freezing and water retention. On this basis, hydrogels can be used for human winter sports sensing and low-temperature environmental alarm devices to provide faster rescue. This study provides a novel method for the development of hydrogels with low-temperature stability, and provides a revelation for the application of anti-freezing hydrogels in icy and snowy environments. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Graphical abstract

25 pages, 840 KiB  
Review
Stem Cell Therapy for Myocardial Infarction Recovery: Advances, Challenges, and Future Directions
by Nicholas T. Le, Matthew W. Dunleavy, William Zhou, Sumrithbir S. Bhatia, Rebecca D. Kumar, Suyin T. Woo, Gonzalo Ramirez-Pulido, Kaushik S. Ramakrishnan and Ahmed H. El-Hashash
Biomedicines 2025, 13(5), 1209; https://doi.org/10.3390/biomedicines13051209 - 16 May 2025
Cited by 1 | Viewed by 1840
Abstract
Myocardial infarction (MI) is a leading cause of morbidity worldwide, resulting from ischemic damage and necrosis to cardiomyocytes. While the standard treatment regimen for MI can be successful in restoring coronary perfusion, it typically does not resolve myocardial damage, which can leave patients [...] Read more.
Myocardial infarction (MI) is a leading cause of morbidity worldwide, resulting from ischemic damage and necrosis to cardiomyocytes. While the standard treatment regimen for MI can be successful in restoring coronary perfusion, it typically does not resolve myocardial damage, which can leave patients particularly vulnerable to complications such as heart failure or electrical conduction abnormalities. Stem cell therapies offer a promising novel approach aimed at restoring cardiac function and decreasing the incidence of functional complications after an MI. This review used a literature search to evaluate the current landscape of stem cell therapy for post-MI recovery and focuses on the stem cell candidates for MI recovery therapy, delivery methods of such treatment, and their effectiveness. Both preclinical and clinical trials have demonstrated the safety of stem cells, but have struggled with limited cell retention, inconsistent efficacy, and survival. Mechanisms are employed by stem cells to promote regeneration, such as paracrine signaling, angiogenesis, and structural remodeling, in addition to the various stem cell delivery methods, including intracoronary infusion, direct myocardial injection, and intravenous administration. Furthermore, some strategies to combat past challenges in this field are discussed; for instance, extracellular vesicles, bioengineered patches, hydrogels, gene editing, and bioprinting. This article will provide a framework for future research in stem cell therapies and highlight the current progress in the field. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

25 pages, 2568 KiB  
Review
Emerging Multifunctional Biomaterials for Addressing Drug Resistance in Cancer
by Mohamed El-Tanani, Syed Arman Rabbani, Rasha Babiker, Yahia El-Tanani, Shakta Mani Satyam and Thantrira Porntaveetus
Biology 2025, 14(5), 497; https://doi.org/10.3390/biology14050497 - 2 May 2025
Cited by 1 | Viewed by 877
Abstract
Drug resistance remains a major barrier to effective cancer treatment, contributing to poor patient outcomes. Multifunctional biomaterials integrating electrical and catalytic properties offer a transformative strategy to target diverse resistance mechanisms. This review explores their ability to modulate cellular processes, remodel the tumor [...] Read more.
Drug resistance remains a major barrier to effective cancer treatment, contributing to poor patient outcomes. Multifunctional biomaterials integrating electrical and catalytic properties offer a transformative strategy to target diverse resistance mechanisms. This review explores their ability to modulate cellular processes, remodel the tumor microenvironment (TME), and enhance drug delivery. Electrically active biomaterials enhance drug uptake and apoptotic sensitivity by altering membrane potentials, ion channels, and intracellular signaling, synergizing with chemotherapy. Catalytic biomaterials generate reactive oxygen species (ROS), activate prodrugs, reprogram hypoxic and acidic TME, and degrade the extracellular matrix (ECM) to improve drug penetration. Hybrid nanomaterials (e.g., conductive hydrogels, electrocatalytic nanoparticles), synergize electrical and catalytic properties for localized, stimuli-responsive therapy and targeted drug release, minimizing systemic toxicity. Despite challenges in biocompatibility and scalability, future integration with immunotherapy, personalized medicine, and intelligent self-adaptive systems capable of real-time tumor response promises to accelerate clinical translation. The development of these adaptive biomaterials, alongside advancements in nanotechnology and AI-driven platforms, represents the next frontier in precision oncology. This review highlights the potential of multifunctional biomaterials to revolutionize cancer therapy by addressing multidrug resistance at cellular, genetic, and microenvironmental levels, offering a roadmap to improve therapeutic outcomes and reshape oncology practice. Full article
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Optical–Electronic Skin Based on Tea Polyphenol for Dual Signal Wearable Sensing
by Jia-Li Xu, Guangyao Zhao, Jiachen Wang, An Tang, Jun-Tao Liu, Zhijie Zhu, Qiang Zhang and Yu Tian
Biosensors 2025, 15(5), 281; https://doi.org/10.3390/bios15050281 - 29 Apr 2025
Viewed by 634
Abstract
The rapid development of smart electronic skin has led researchers to design a variety of flexible and stretchable devices that can be used to monitor physiological and environmental signals. In this work, we successfully demonstrate a color-adjustable and conductive wearable optical–electronic skin (OE-skin) [...] Read more.
The rapid development of smart electronic skin has led researchers to design a variety of flexible and stretchable devices that can be used to monitor physiological and environmental signals. In this work, we successfully demonstrate a color-adjustable and conductive wearable optical–electronic skin (OE-skin) based on photonic crystal hydrogel that is capable of delivering both optical and electrical signal responses synchronously. The OE-skin is fabricated by incorporating a structural colored layer, composed of periodically aligned magnetic nanoparticles, into a polyacrylamide hydrogel matrix that contains tea polyphenols and borax. The dynamic boronate ester bonds formed between borax and the catechol groups of tea polyphenols are able to enhance the mechanical properties of the OE-skin, while also conferring excellent electrical conductivity, high sensitivity, and a rapid electrical response. Additionally, the tea polyphenols, which are natural active compounds derived from tea, possess diverse bioactive properties, thereby endowing the OE-skin with excellent antibacterial and biocompatibility characteristics. In addition, the developed electronic skin successfully demonstrates its capability in synergistic electronic and optical sensing during human motion monitoring, indicating broad application prospects in the field of smart wearable sensors. Full article
Show Figures

Figure 1

18 pages, 4725 KiB  
Article
Tissue-Adhesive and Biocompatible Zein-Polyaniline-Based Hydrogels for Mechanoresponsive Energy-Harvesting Applications
by Maduru Suneetha, Seainn Bang, Sarah A. Alshehri and Sung Soo Han
Gels 2025, 11(5), 307; https://doi.org/10.3390/gels11050307 - 22 Apr 2025
Viewed by 538
Abstract
Flexible, biocompatible, and adhesive materials are vital for wearable strain sensors in bioelectronics. This study presents zein-polyaniline (ZPANI) hydrogels with mechanoresponsive energy-harvesting properties. SEM revealed a sheet-like fibrous morphology, enhancing adhesion. Incorporating 0.5 wt% polyaniline (PANI) introduced nanostructured aggregates, while higher PANI concentrations [...] Read more.
Flexible, biocompatible, and adhesive materials are vital for wearable strain sensors in bioelectronics. This study presents zein-polyaniline (ZPANI) hydrogels with mechanoresponsive energy-harvesting properties. SEM revealed a sheet-like fibrous morphology, enhancing adhesion. Incorporating 0.5 wt% polyaniline (PANI) introduced nanostructured aggregates, while higher PANI concentrations (3–5 wt%) formed intertwined fibrous networks, improving the mechanical integrity, surface area, and conductivity. PANI enhanced electrical conductivity, and the hydrogels displayed excellent swelling behavior, ensuring flexibility and strong tissue adhesion. Biocompatibility was validated through fibroblast cell culture assays, and the adhesive properties were tested on substrates, such as porcine skin, steel, and aluminum, demonstrating versatile adhesion. The adhesion strength of hydrogels to porcine skin was greatly enhanced with an increasing amount of PANI. The maximum adhesion strength was found to be 30.1 ± 2.1 kPa for ZPANI-5.0. Mechanical testing showed a trade-off between strength and conductivity. The tensile strength decreased from 13.4 kPa (ZPANI-0) to 7.1 kPa (ZPANI-5.0), and the compressive strength declined from 18.5 kPa to 1.6 kPa, indicating increased brittleness. A rheological analysis revealed enhanced strain tolerance (>500% strain) with an increasing PANI content. The storage modulus (G′) remained stable up to 100% strain in PANI-free hydrogels but collapsed beyond 450% strain, while PANI-containing hydrogels exhibited improved viscoelasticity. Mechanical testing showed robust voltage output signals under compression within a 20 s response time. Despite the reduced mechanical strength, energy-harvesting tests showed a surface power density of 0.12 nW cm−2, charge storage of 0.71 nJ, and a surface energy density of 1.4 pWh cm−2. The synergy of the piezoelectric response, bioadhesion, and tunable viscoelasticity establishes ZPANI hydrogels as promising candidates for wearable sensors and energy-harvesting applications. Optimizing the PANI content is crucial for balancing mechanical stability, adhesion, and electrical performance, ensuring long-term bioelectronic functionality. Full article
(This article belongs to the Special Issue Towards Smart Gel Material for Flexible and Wearable Electronics)
Show Figures

Figure 1

Back to TopTop