Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = eastern Tianshan Mountains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 17827 KiB  
Article
Examining Glacier Changes Since 1990 and Predicting Future Changes in the Turpan–Hami Area, Eastern Tianshan Mountains (China), Until the End of the 21st Century
by Yuqian Chen, Baozhong He, Xing Jiang, Gulinigaer Yisilayili and Zhihao Zhang
Sustainability 2025, 17(11), 5093; https://doi.org/10.3390/su17115093 - 1 Jun 2025
Viewed by 572
Abstract
Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in [...] Read more.
Glaciers, often regarded as “frozen reservoirs”, play a crucial role in replenishing numerous rivers in arid regions, contributing to ecological balance and managing river flow. Recently, the rapid shrinkage of the glaciers in the East Tianshan Mountains has affected the water quantity in the Karez system. However, studies on glacier changes in this region are limited, and recent data are scarce. This study utilizes annual Landsat composite images from 1990 to 2022 obtained via the Google Earth Engine (GEE). It utilizes a ratio threshold approach in conjunction with visual analysis to gather the glacier dataset specific to the Turpan–Hami region. The Open Global Glacier Model (OGGM) is used to model the flowlines and mass balance of around 300 glaciers. The study analyzes the glacier change trends, distribution characteristics, and responses to climate factors in the Turpan–Hami region over the past 30 years. Additionally, future glacier changes through the end of the century are projected using CMIP6 climate data. The findings indicate that the following: (1) From 1990 to 2022, glaciers in the research area underwent considerable retreat. The total glacier area decreased from 204.04 ± 0.887 km2 to 133.52 ± 0.742 km2, a reduction of 70.52 km2, representing a retreat rate of 34.56%. The number of glaciers also decreased from 304 in 1990 to 236 in 2022. The glacier length decreased by an average of 7.54 m·a−1, with the average mass balance at −0.34 m w.e.·a−1, indicating a long-term loss of glacier mass. (2) Future projections to 2100 indicate that under three climate scenarios, the area covered by glaciers could diminish by 89%, or 99%, or even vanish entirely. In the SSP585 scenario, glaciers are projected to nearly disappear by 2057. (3) Rising temperatures and solar radiation are the primary factors driving glacier retreat in the Turpan–Hami area. Especially under high emission scenarios, climate warming will accelerate the glacier retreat process. Full article
Show Figures

Figure 1

29 pages, 17275 KiB  
Article
A Spatial Shift in Flood–Drought Severity in the Decades Surrounding 2000 in Xinjiang, China
by Sulei Naibi, Anming Bao, Ye Yuan, Jiayu Bao, Rafiq Hamdi, Tao Yu, Xiaoran Huang, Ting Wang, Tao Li, Jingyu Jin, Gang Long and Piet Termonia
Remote Sens. 2025, 17(10), 1746; https://doi.org/10.3390/rs17101746 - 16 May 2025
Viewed by 525
Abstract
The flood–drought severity in arid regions such as Xinjiang is increasingly influenced by climate extremes. While prior studies have explored the relationship between climate extremes and flood–drought dynamics, few have analyzed these interactions at different time and spatial scales using different method combinations. [...] Read more.
The flood–drought severity in arid regions such as Xinjiang is increasingly influenced by climate extremes. While prior studies have explored the relationship between climate extremes and flood–drought dynamics, few have analyzed these interactions at different time and spatial scales using different method combinations. This study addresses that gap by utilizing a gridded dataset (CN05.1) during 1961–2020, examining the China Z index (flood–drought index) and climate extremes. The analysis reveals significant increases in precipitation and heat extremes, while cold extremes have decreased. In addition to overall periodic changes with 2.5 and 8 years in the flood–drought severity, our results demonstrate a significant spatial shift between 1981 and 2000 and between 2001 and 2020. Previously flood-dominant regions, including portions of the Junggar Basin, Eastern Tianshan Mountains, and Tarim River Basin, transitioned to drought-dominant in 2001–2020. Conversely, drought-dominant regions became flood-dominant. Strong positive correlations (0.65–0.84) were found between the Z index and precipitation extremes, while temperature extremes showed weaker correlations. Furthermore, we applied six variable selection regression methods, with Random Forest variable selection + Random Forest regression (RF+RF) performing the best (mean R2 = 0.71), highlighting their ability to manage non-linear relationships and multicollinearity between climate indices. RF+RF proved more effective at handling correlated variables, which were crucial in capturing the region’s flood–drought dynamics. The quantified spatial reversals and non-linear climate-flood/drought relationships provide actionable metrics for early warning systems, enabling targeted infrastructure upgrades and water allocation policies in arid regions. These findings establish a transferable framework linking climate extremes to hydrological risks, directly informing adaptive land management and disaster preparedness strategies for Xinjiang and analogous regions under intensifying climate variability. Full article
Show Figures

Figure 1

22 pages, 4942 KiB  
Article
Identification of Production–Living–Ecological Spatial Conflicts and Multi-Scenario Simulations in Extreme Arid Areas
by Amanzhuli Yerkenhazi, Kerim Mamat, Abudukeyimu Abulizi, Yusuyunjiang Mamitimin, Xuemei Wei, Shanshan Tang, Junxia Wang, Shaojie Bai and Le Yuan
Land 2025, 14(5), 1002; https://doi.org/10.3390/land14051002 - 6 May 2025
Viewed by 542
Abstract
“Production–Living–Ecological” spatial conflicts (PLECs) are critical issues arising from regional land development, affecting economic, social, and ecological security. Identifying and analyzing these conflicts’ spatiotemporal characteristics is essential for sustainable development. This study focuses on the Tuha region, which experiences an extremely arid climate, [...] Read more.
“Production–Living–Ecological” spatial conflicts (PLECs) are critical issues arising from regional land development, affecting economic, social, and ecological security. Identifying and analyzing these conflicts’ spatiotemporal characteristics is essential for sustainable development. This study focuses on the Tuha region, which experiences an extremely arid climate, classifying the region’s “Production–Living–Ecological” (PLE) spaces into four types: living–production, ecological–production, production–ecological, and ecological spaces. A spatial conflict measurement model based on landscape patterns was developed to analyze the evolution of PLECs from 2000 to 2020. Additionally, the PLUS model was used to simulate PLEC patterns in 2030 under different development scenarios. The results indicate that between 2000 and 2020, the area proportions in the Tuha region ranked from largest to smallest as follows: ecological space, ecological–production space, production–ecological space, and living–production space. The area of living–production space increased, while production–ecological space first increased and then stabilized, and the areas of ecological and ecological–production spaces decreased. From 2000 to 2020, spatial conflicts in the region were predominantly characterized by mild weak conflicts. High–high PLEC clusters were concentrated in urban and surrounding areas of Gaochang District, Toksun County, Shanshan County, and Yizhou District, while low–low clusters were found in the Eastern Tianshan Mountains and northern Barkol Kazakh Autonomous County. NDVI, GDP, population, and proximity to roads positively influenced PLECs, while elevation, slope, aspect, and precipitation had inhibitory effects. Under different development scenarios, the natural development scenario leads to the most severe spatial conflicts, while the cropland protection scenario reduces PLECs and enhances regional welfare, making it the optimal pathway for future development. Full article
Show Figures

Figure 1

16 pages, 7909 KiB  
Article
Zircon U-Pb Geochronology and Hf Isotopes of the Granitoids from Cahanwusu Cu Deposit in Awulale Mountain, Western Tianshan: Implication for Regional Mineralization
by Wei Zhang, Mao-Xue Chen, Mei-Li Yang, Wen-Hui Yang and Xing-Chun Zhang
Minerals 2025, 15(4), 380; https://doi.org/10.3390/min15040380 - 4 Apr 2025
Cited by 1 | Viewed by 444
Abstract
Awulale Mountain is one of the most important Fe-Cu concentration areas situated in the eastern part of Western Tianshan. The Cu deposits in the belt are genetically associated with the Permian intermediate and felsic intrusions. However, the precise age and magma source of [...] Read more.
Awulale Mountain is one of the most important Fe-Cu concentration areas situated in the eastern part of Western Tianshan. The Cu deposits in the belt are genetically associated with the Permian intermediate and felsic intrusions. However, the precise age and magma source of the causative intrusions are currently not confirmed, constraining our understanding of regional mineralization. The Cahanwusu porphyry Cu deposit is located in the western part of Awulale Mountain. Field investigations have shown that the mineralization in the deposit is genetically associated with granitic porphyry and diorite porphyry. In this paper, we provide detailed zircon U-Pb ages and in-situ Hf isotopic compositions of the granitic porphyry and diorite porphyry. The granitic porphyry and diorite porphyry have zircon U-Pb ages of 328.6 ± 2.6 Ma (MSWD = 0.52; n = 23) and 331 ± 2.8 Ma (MSWD = 0.95; n = 21), respectively. This indicates that the Cahanwusu deposit was formed in the Carboniferous in a subduction setting. This is distinguishable from other porphyry Cu deposits in the belt, which were generally formed in the Permian in the post-collision extensional setting. The granitic porphyry and diorite porphyry exhibit positive εHf(t) values varying from +2.8 to +5.4 (average of +4.1) and +2.0 to +5.1 (average of +4.1), respectively. The magmas of these causative intrusions were interpreted to be derived from the partial melting of the juvenile lower crust which originated from cooling of mantle-derived magmas related to the subduction process. Our new results highlight that the Cahanwusu deposit represents a new episode of Cu mineralization in the belt and the Carboniferous granitoids in Awulale Mountain are potential candidates for Cu exploration. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

19 pages, 4267 KiB  
Article
Investigation on the Linkage Between Precipitation Trends and Atmospheric Circulation Factors in the Tianshan Mountains
by Chen Chen, Yanan Hu, Mengtian Fan, Lirui Jia, Wenyan Zhang and Tianyang Fan
Water 2025, 17(5), 726; https://doi.org/10.3390/w17050726 - 1 Mar 2025
Cited by 1 | Viewed by 945
Abstract
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and [...] Read more.
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and is highly sensitive to the nuances of climate change. Utilizing ERA5 precipitation datasets alongside 24 atmospheric circulation indices, this study delves into the variances in Tianshan’s precipitation patterns and their correlation with large-scale atmospheric circulation within the timeframe of 1981 to 2020. We observe a seasonally driven dichotomy, with the mountains exhibiting increasing moisture during the spring, summer, and autumn months, contrasted by drier conditions in winter. There is a pronounced spatial variability; the western and northern reaches exhibit more pronounced increases in precipitation compared to their eastern and southern counterparts. Influences on Tianshan’s precipitation patterns are multifaceted, with significant factors including the North Pacific Pattern (NP), Trans-Niño Index (TNI), Tropical Northern Atlantic Index (TNA*), Extreme Eastern Tropical Pacific SST (Niño 1+2*), North Tropical Atlantic SST Index (NTA), Central Tropical Pacific SST (Niño 4*), Tripole Index for the Interdecadal Pacific Oscillation [TPI(IPO)], and the Western Hemisphere Warm Pool (WHWP*). Notably, NP and TNI emerge as the predominant factors driving the upsurge in precipitation. The study further reveals a lagged response of precipitation to atmospheric circulatory patterns, underpinning complex correlations and resonance cycles of varying magnitudes. Our findings offer valuable insights for forecasting precipitation trends in mountainous terrains amidst the ongoing shifts in global climate conditions. Full article
Show Figures

Figure 1

21 pages, 13936 KiB  
Article
The Evolution Relationship Between Intensive Land Use and Land Ecological Security in the Urban Agglomeration in the Northern Slope of the Tianshan Mountains, Northwest China
by Xianwei Zhu, Jianming Ye, Mengmeng Zhu, Zhe Gao, Miaomiao Li, Mei Wang and Yingbin Li
Land 2024, 13(12), 2226; https://doi.org/10.3390/land13122226 - 19 Dec 2024
Viewed by 865
Abstract
Revealing the relationship between intensive land use (ILU) and land ecological security (LES) is crucial for achieving high-quality land resource development and ensuring the sustainability of land ecosystems, especially in arid regions with fragile human–land relationships. In this study, we evaluated ILU and [...] Read more.
Revealing the relationship between intensive land use (ILU) and land ecological security (LES) is crucial for achieving high-quality land resource development and ensuring the sustainability of land ecosystems, especially in arid regions with fragile human–land relationships. In this study, we evaluated ILU and LES in the urban agglomeration on the northern slope of the Tianshan Mountains (UANSTM) and analyzed the evolution of ILU and LES using Pearson correlation analysis, four-quadrant model, and coupling coordination degree model. The results indicated that from 2012 to 2022, ILU and its three subsystems generally showed an upward trend in the UANSTM, with an average annual growth rate of 2.96%, 2.50%, 3.32%, and 0.289%, respectively, and with ILU levels significantly higher in the eastern and central counties compared to other areas. LES and its three subsystems also exhibited a general increase, with average annual growth rates of 1.63%, 0.86%, 3.10%, and 1.51%, respectively, although high-level areas displayed distinct spatial variations. The Pearson correlation analysis showed that the land input level had a significant negative effect on the pressure, but the positive effects of state and response enhanced the LES. The number of double-high cities increased significantly from 1 to 6, and the number of double-low cities decreased from 6 to 0. Compared with other cities and counties, the LES-lagging counties and cities faced the challenge of coordinating urban development and ecological conservation. While coupling coordination levels across all counties improved to varying degrees, none reached the optimal coordination stage. The findings and methodologies of this study provide helpful insights into human–land relationships in arid regions, supporting the goals of high-quality urban development and sustainability. Full article
(This article belongs to the Special Issue Land Resource Assessment)
Show Figures

Figure 1

12 pages, 3514 KiB  
Article
Elevational Effects of Climate Warming on Tree Growth in a Picea schrenkiana Forest in the Eastern Tianshan Mountains
by Jianing He, Zehao Shen, Caiwen Ning, Wentao Zhang and Ümüt Halik
Forests 2024, 15(12), 2052; https://doi.org/10.3390/f15122052 - 21 Nov 2024
Cited by 1 | Viewed by 1078
Abstract
Considerable uncertainty exists regarding the overall effects of future climate change on forests in arid mountains, and the elevational range of drought-induced tree growth decline remains unclear. Tianshan is the largest mountain in arid regions globally. Here, we analyzed tree ring data of [...] Read more.
Considerable uncertainty exists regarding the overall effects of future climate change on forests in arid mountains, and the elevational range of drought-induced tree growth decline remains unclear. Tianshan is the largest mountain in arid regions globally. Here, we analyzed tree ring data of pure stands of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) in the Jiangbulake region in the eastern Tianshan Mountains along an elevational gradient (1800–2600 m a.s.l.). The radial growth of P. schrenkiana trees declined in three of the nine sample strips (1800–2100 m a.s.l.) over the last two decades. P. schrenkiana growth response (measured by the tree ring width index, RWI) to temperature significantly changed at an elevational “inflection point” at 2100–2200 m. RWI was significantly negatively correlated with temperature at low elevations, whereas the opposite was observed at high elevations. Precipitation and minimum temperatures in winter and spring and mean temperatures in spring and summer were the main drivers of P. schrenkiana growth, with the effect of maximum temperatures on tree growth concentrated in the spring. In addition to climate warming in the study area since the 1970s, tree growth (as measured by the basal area increment, BAI) at elevations below 2200 m initially increased and then decreased. Tree growth at higher elevations continues to increase. Since 2000, the average RWI at high elevations exceeded that at low elevations. The average BAI values at high and low elevations have gradually approached each other in recent decades, although lower elevations exhibited higher values in the past. Full article
(This article belongs to the Special Issue Forest Growth Modeling in Different Ecological Conditions)
Show Figures

Figure 1

20 pages, 20361 KiB  
Article
The Seismic Surface Rupture Zone in the Western Segment of the Northern Margin Fault of the Hami Basin and Its Causal Interpretation, Eastern Tianshan
by Hao Sun, Daoyang Yuan, Ruihuan Su, Shuwu Li, Youlin Wang, Yameng Wen and Yanwen Chen
Remote Sens. 2024, 16(22), 4200; https://doi.org/10.3390/rs16224200 - 11 Nov 2024
Viewed by 1097
Abstract
The Eastern Tianshan region, influenced by the far-field effect of northward compression and expansion of the Qinghai-Xizang block, features highly developed Late Quaternary active faults that exhibit significant neotectonic activity. Historically, the Barkol-Yiwu Basin, located to the north of the Eastern Tianshan, experienced [...] Read more.
The Eastern Tianshan region, influenced by the far-field effect of northward compression and expansion of the Qinghai-Xizang block, features highly developed Late Quaternary active faults that exhibit significant neotectonic activity. Historically, the Barkol-Yiwu Basin, located to the north of the Eastern Tianshan, experienced two major earthquakes in 1842 and 1914, each with a magnitude of M71/2. In contrast, the Hami Basin on the southern margin of the Eastern Tianshan has no historical records of any major earthquakes, and its seismic potential, mechanisms, and future earthquake hazards remain unclear. Based on satellite image interpretation and field surveys, this study identified a relatively recent and well-preserved seismic surface rupture zone with good continuity in the Liushugou area of the western segment of the Northern Margin Fault of the Hami Basin (HMNF), which is the seismogenic structure responsible for the rupture. The surface rupture zone originates at Kekejin in the east, extends intermittently westward through Daipuseke Bulake and Liushugou, and terminates at Wuzun Bulake, with a total length of approximately 21 km. The rupture zone traverses the youngest geomorphic surface units, such as river beds or floodplains and first-order terraces (platforms), and is characterized by a series of single or multiple reverse fault scarps. The morphology of fault scarps is clear, presenting a light soil color with heights ranging from 0.15 m to 2.13 m and an average displacement of 0.56 m, suggesting that this surface rupture zone likely represents the most recent seismic event. Comparison with historical earthquake records in the Eastern Tianshan region suggests that the rupture zone may have been formed simultaneously with the Xiongkuer rupture zone by the 1842 M71/2 earthquake along the boundary faults on both sides of the Barkol Mountains, exhibiting a flower-like structural pattern. Alternatively, it might represent a separate, unrecorded seismic event occurring shortly after the 1842 earthquake. The estimated magnitude of the associated earthquake is about 6.6~6.9. Given that surface-rupturing earthquakes have already occurred in the western segment, the study indicates that the Erdaogou–Nanshankou section of the HMNF has surpassed the average recurrence interval for major earthquakes, indicating a potential future earthquake hazard. Full article
Show Figures

Figure 1

16 pages, 3193 KiB  
Article
Land Use Changes and Spatiotemporal Distribution of Domestic Water Consumption in the Northern Slope of Tianshan Mountains
by Menglin Zhang, Zhao Li, Gang Chen and Fadong Li
Water 2024, 16(21), 3037; https://doi.org/10.3390/w16213037 - 23 Oct 2024
Viewed by 911
Abstract
Rapid population growth and subsequent urbanization pose significant challenges of water shortage in arid regions. As an important area along the One Belt and One Road line, the Northern Slope of Tianshan Mountains (NSTM) has suffered from water shortages owing to rapid urbanization [...] Read more.
Rapid population growth and subsequent urbanization pose significant challenges of water shortage in arid regions. As an important area along the One Belt and One Road line, the Northern Slope of Tianshan Mountains (NSTM) has suffered from water shortages owing to rapid urbanization in recent decades. To conserve water resources and protect the ecosystem, understanding the temporal and spatial variations of the domestic water consumption, availability, and its influencing factors is essential. According to water resource regionalization and its characteristics in NSTM, it was divided into three sections, namely the west section, the middle section, and the east section. In addition, this work characterized the temporal and spatial variation of domestic water consumption in NSTM with a focus on the understanding of the influence of urbanization on domestic water consumption from 1990 to 2020 based on three sections. The results showed that during this period of time, construction land use increased by 2256 km2 corresponding to the population increase of 158.58 × 104. Subsequently, the total domestic water consumption increased from 7.55 × 107 m3 in 1990 to 2.60 × 108 m3 in 2020. The eastern section demonstrated steady growth, while the western and middle sections experienced larger fluctuations in domestic water consumption. Urbanization has been identified as a significant factor influencing the shift in domestic water consumption. This study offers a scientific foundation for the sustainable management of water resources in arid areas. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

21 pages, 4625 KiB  
Article
Research on an Evaluation Method of Snowdrift Hazard for Railway Subgrades
by Shumao Qiu, Mingzhou Bai, Daming Lin, Yufang Zhang, Haoying Xia, Jiawei Fan, Wenjiao Zhou and Zhenyu Tang
Appl. Sci. 2024, 14(16), 7247; https://doi.org/10.3390/app14167247 - 17 Aug 2024
Cited by 2 | Viewed by 1132
Abstract
The objective of this study is to investigate the potential risks posed by snowdrifts, a prevalent cause of natural disasters in northern China, on railway subgrades, and to assess their risk level. As a wind-driven process of snow migration and redeposition, snowdrifts pose [...] Read more.
The objective of this study is to investigate the potential risks posed by snowdrifts, a prevalent cause of natural disasters in northern China, on railway subgrades, and to assess their risk level. As a wind-driven process of snow migration and redeposition, snowdrifts pose a significant threat to the safety of transportation infrastructures. This study focuses on the Afu Railway in Xinjiang, situated on the northern slopes of the Eastern Tianshan Mountains, where it experiences periodic snowdrifts. We employed a combination of the Analytic Hierarchy Process (AHP) and fuzzy comprehensive evaluation (FCE) to construct an integrated evaluation system for assessing the risk of snowdrift to railway subgrades. The results indicate that subgrade design parameters and regional snowfield conditions are two key metrics affecting the extent of snowdrift disasters, with topography, vegetation coverage, and wind speed also exerting certain impacts. The evaluation method of this study aligns with the results of on-site observations, verifying its accuracy and practicality, thereby providing a solid risk assessment framework for snowdrifts along the railway. The scientific and systematic hazard assessment method of railway subgrades developed in this research provides basic data and theoretical support for future research, and provides a scientific basis for relevant departments to formulate countermeasures, so as to improve the safety and reliability of railway operations. Full article
Show Figures

Figure 1

20 pages, 21930 KiB  
Article
The Ecological Environmental Effects and Topographic Gradient Analysis of Transformation in the Production–Living–Ecological Spaces in the Northern Slope of the Tianshan Mountains
by Minghao Yi, Qingwu Yan, Keqi Li, Xiaosong Ma, Guie Li, Zihao Wu, Qinke Pan and Xingshan Chen
Land 2024, 13(8), 1170; https://doi.org/10.3390/land13081170 - 30 Jul 2024
Cited by 2 | Viewed by 1218
Abstract
Taking the northern slope of the Tianshan Mountains (NSTM) in Xinjiang as the research area, this study analyzes the changes in the Production–Living–Ecological (P-L-E) Spaces and their Ecological Environmental Effects, providing a basis for optimizing the spatial pattern of the P-L-E Spaces and [...] Read more.
Taking the northern slope of the Tianshan Mountains (NSTM) in Xinjiang as the research area, this study analyzes the changes in the Production–Living–Ecological (P-L-E) Spaces and their Ecological Environmental Effects, providing a basis for optimizing the spatial pattern of the P-L-E Spaces and regional ecological environment protection in this area. Based on land use data and DEM data, various methods were used for analysis. These methods include the land use transfer matrix, ecological environment quality index, hot spot analysis, ecological contribution rate, and Terrain Position Index. The analysis focused on changes in the spatial pattern of the P-L-E Spaces from 1980 to 2020. It also examined the spatiotemporal distribution of ecological environment quality (EEQ). Furthermore, it explored the differentiation characteristics of EEQ in terrain gradients. The conclusions are as follows: (1) On the NSTM, Ecological Space decreased while Production and Living Space expanded. From 1980 to 2020, Agricultural Production Space increased rapidly. Industrial Production Space also saw rapid growth during this period. Urban Living Space expanded significantly from 1980 to 2020. Rural Living Space experienced steady growth over the same period. Forest Ecological Space initially increased but later decreased. Water Ecological Space showed an initial increase followed by a decrease from 1980 to 2020. (2) The EEQ first remained stable, declined slightly from 2000 to 2010, improved significantly, and then deteriorated from 2010 to 2020. The distribution of EEQ exhibits a “high in the northwest, low in the southeast” pattern. EEQ hot spots on the NSTM are concentrated in the Tianshan Mountains, with clustering increasing in both northern and southern areas. Cold spots are found in the southern, eastern, and northern NSTMs, with aggregation strengthening in the south and north and slightly weakening in the east. Hot spots of EEQ changes on the NSTM show stable distribution, with stronger aggregation from 2000 to 2020. However, aggregation of cold spots has gradually weakened, yet noticeable aggregation persists throughout the study period. (3) There is a significant gradient difference in EEQ distribution. Higher terrain gradients have a higher EEQ. From 1980 to 2020, lower terrain gradients saw improvement, while higher gradients experienced deterioration. The EEQ on the NSTM has declined, showing significant spatial differences, with better quality on the northern side than the southern side. Future efforts should focus on restoring the environment at lower gradients, mitigating deterioration at higher gradients, and enhancing water conservation in the Tianshan Mountains. Full article
Show Figures

Figure 1

29 pages, 5946 KiB  
Article
Geochronology, Geochemical Characterization and Tectonic Background of Volcanic Rocks of the Longjiang Formation in the Lengjimanda Plate Area, Middle Da Hinggan Mountains
by Shi-Chang Wang, Yu-Jie Hao, Lu Shi, Zhen Tang and Shuang Zhu
Minerals 2024, 14(7), 719; https://doi.org/10.3390/min14070719 - 16 Jul 2024
Cited by 1 | Viewed by 1069
Abstract
The Lengjimanda plate is situated in the middle section of the Da Hinggan mountains, in the eastern section of the Tianshan Xingmeng orogenic belt. To determine the formation age of the volcanic rocks in the Longjiang formation in this area, to explore their [...] Read more.
The Lengjimanda plate is situated in the middle section of the Da Hinggan mountains, in the eastern section of the Tianshan Xingmeng orogenic belt. To determine the formation age of the volcanic rocks in the Longjiang formation in this area, to explore their origin and tectonic background, and to reconstruct the geodynamic evolution of the region, this study conducted petrological, zircon U–Pb geochronological, geochemical, and isotopic analyses of the volcanic rocks in the Longjiang formation. The Longjiang formation’s volcanic rocks are primarily composed of trachyandesite, trachyte trachydacite, and andesite, which are intermediate basic volcanic rocks. They are enriched in large-ion lithophile elements, are depleted in high-field-strength elements, are significantly fractionated between light and heavy rare earth elements, and exhibit a moderate negative Eu anomaly in most samples. The results of the LA–ICP–MS zircon U–Pb dating indicate that the volcanic rocks in this group were formed in the Early Cretaceous period at 129.1 ± 0.82 Ma. The zircon εHf(t) ranges from +1.13 to +43.77, the tDM2 ranges from +655 to +1427 Ma, the initial Sr ratio (87Sr/86Sr)i ranges from 0.7030 to 0.7036, and the εNd(t) ranges from +2.1 to +6.6. Based on the geochemical compositions and isotopic characteristics of the rocks, the initial magma of the volcanic rocks in the Longjiang formation originated from the partial melting of basaltic crustal materials, with a source material inferred to be depleted mantle-derived young crustal. These rocks were formed in a superimposed post-collisional and continental arc environment, possibly associated with the Mongol-Okhotsk Ocean closure and the oblique subduction of the Pacific plate. This study addresses a research gap regarding the volcanic rocks of the Longjiang formation in this area. Its findings can be applied to exploration and prospecting in the region. Full article
Show Figures

Figure 1

21 pages, 3842 KiB  
Article
Living Together, Living Apart: Residential Structures in Late Bronze Age Shirenzigou, Xinjiang
by Meng Ren, Lixun Chen, Tongyuan Xi, Yue You, Duo Tian, Jianxin Wang, Marcella Festa and Jian Ma
Land 2024, 13(5), 576; https://doi.org/10.3390/land13050576 - 26 Apr 2024
Cited by 1 | Viewed by 1586
Abstract
The spatial organization within ancient settlements offers valuable insights into the evolution of social complexity. This paper examines spatially and chronologically contextualized architectural structures and artifacts uncovered at the Late Bronze Age Shirenzigou site to explore the relationship between the use of space [...] Read more.
The spatial organization within ancient settlements offers valuable insights into the evolution of social complexity. This paper examines spatially and chronologically contextualized architectural structures and artifacts uncovered at the Late Bronze Age Shirenzigou site to explore the relationship between the use of space and underlying social dynamics in the Eastern Tianshan Mountains of Xinjiang (China). Central to our findings is a distinctive centripetal compound structure, consisting of a larger non-domestic building surrounded by smaller dwellings. This arrangement, along with the variety and distribution of the artifacts, reveals a complex interplay between private and communal spaces at the site, reflecting a growing complexity within the social fabric of the community. The formation of conglomerates of houses around a central communal structure which occurs across the Tianshan Mountains appears to be a strategic adaptation in response to environmental challenges and socio-political transformations across this region at the end of the second millennium BCE. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

18 pages, 4001 KiB  
Article
Time-Transgressive Onset of Holocene Climate Optimum in Arid Central Asia and Its Association with Cultural Exchanges
by Zhen Wang, Xiaokang Liu, Haichao Xie, Shengqian Chen, Jianhui Chen, Haipeng Wang, Meihong Ma and Fahu Chen
Land 2024, 13(3), 356; https://doi.org/10.3390/land13030356 - 11 Mar 2024
Cited by 4 | Viewed by 2267
Abstract
Arid central Asia (ACA) is dominated by mid-latitude westerlies and characterized by a climate optimum (a relatively humid climate that has supported the development of human culture) in clear contrast with the climate of monsoonal Asia during the Holocene. Significantly, whether the onset [...] Read more.
Arid central Asia (ACA) is dominated by mid-latitude westerlies and characterized by a climate optimum (a relatively humid climate that has supported the development of human culture) in clear contrast with the climate of monsoonal Asia during the Holocene. Significantly, whether the onset of the Holocene Climate Optimum (HCO) had an impact on cultural exchanges along the ancient Silk Road remains unknown. In this study, we compared the onset of the HCO in different parts of the vast ACA region by referring to a variety of previously established paleo-moisture/precipitation records. Intriguingly, we found significant differences in the onset of the HCO between the western and eastern parts of ACA. The onset of the HCO in the western part of ACA (i.e., to the west of the Tianshan Mountains) mainly occurred at ~8 ka BP (1 ka = 1000 cal yr BP). In contrast, the onset of the HCO occurred at ~6 ka in northern Xinjiang and even as late as ~5 ka in southern Xinjiang; this is a delay of 2–3 thousand years compared with the western part of ACA. These results likely indicate that the onset of the HCO occurred in a time-transgressive manner in ACA, namely, ‘early in the west but late in the east’. On the other hand, we found that the onset of the HCO in the western part of ACA may have resulted in the inception of wheat planting and the development of agricultural civilization and that the onset of the HCO in northern Xinjiang may have prompted the southward migration of Afanasievo culture after ~5 ka. Additionally, the initiation of the HCO in southern Xinjiang could provide an environmental basis for the spread and planting of wheat and millet in this area after ~4.5 ka. We speculate that the spatial differences in the onset of the HCO in ACA are mainly related to temporal changes in the intensity and position of the mid-latitude westerly jet. Although the increase in insolation and reduction in the global ice volume would have led to an increase in the water vapor feeding the western part of ACA around 8 ka, the climate in the eastern part of ACA (namely, the Xinjiang region) could have only become humid after 6 ka when the westerlies were intensified and became positioned in the south. Moreover, the delayed HCO in southern Xinjiang probably benefited from the stronger westerly winds that appeared around 5 ka, which could have overcome the influence of the tall topography of the Tianshan Mountains. Therefore, in addition to external forcing (i.e., insolation), the ocean–atmospheric teleconnection, the regional topography, and their connection to the climate system are important in determining the spatial differences in the time-transgressive onset of the HCO in ACA. Our findings contribute to understanding the spatio-temporal characteristics of the hydroclimate in regions with complex eco-environmental systems and a diverse history of human activity. Full article
Show Figures

Figure 1

20 pages, 18390 KiB  
Article
Characteristics and Drivers of Vegetation Change in Xinjiang, 2000–2020
by Guo Li, Jiye Liang, Shijie Wang, Mengxue Zhou, Yi Sun, Jiajia Wang and Jinglong Fan
Forests 2024, 15(2), 231; https://doi.org/10.3390/f15020231 - 25 Jan 2024
Cited by 8 | Viewed by 2200
Abstract
Examining the features of vegetation change and analyzing its driving forces across an extensive time series in Xinjiang are pivotal for the ecological environment. This research can offer a crucial point of reference for regional ecological conservation endeavors. We calculated the fractional vegetation [...] Read more.
Examining the features of vegetation change and analyzing its driving forces across an extensive time series in Xinjiang are pivotal for the ecological environment. This research can offer a crucial point of reference for regional ecological conservation endeavors. We calculated the fractional vegetation cover (FVC) using MOD13Q1 data accessed through the Google Earth Engine (GEE) platform. To discern the characteristics of vegetation changes and forecast future trends, we employed time series analysis, coefficient of variation, and the Hurst exponent. The correlation between climate factors and FVC was investigated through correlation analysis. Simultaneously, to determine the relative impact of meteorological change and anthropogenic actions on FVC, we utilized multiple regression residual analysis. Furthermore, adhering to China’s ecological functional zone classification, Xinjiang was segmented into five ecological zones: R1 Altai Mountains-Junggar West Mountain Forest and Grassland Ecoregion, R2 Junggar Basin Desert Ecoregion, R3 Tianshan Mountains Mountain Forest and Grassland Ecoregion, R4 Tarim Basin-Eastern Frontier Desert Ecoregion, and R5 Pamir-Kunlun Mountains-Altan Mountains Alpine Desert and Grassland Ecoregion. A comparative analysis of these five regions was subsequently conducted. The results showed the following: (1) During the first two decades of the 21st century, the overall FVC in Xinjiang primarily exhibited a trend of growth, exhibiting a rate of increase of 4 × 10−4 y−1. The multi-year average FVC was 0.223. The mean value of the multi-year FVC was 0.223, and the mean values of different ecological zones showed the following order: R1 > R3 > R2 > R5 > R4. (2) The predominant spatial pattern of FVC across Xinjiang’s landscape is characterized by higher coverage in the northwest and lower in the southeast. In this region, 66.63% of the terrain exhibits deteriorating vegetation, while 11% of the region exhibits a notable rise in plant growth. Future changes in FVC will be dominated by a decreasing trend. Regarding the coefficient of variation outcomes, a minor variation, representing 42.12% of the total, is noticeable; the mean coefficient of variation stands at 0.2786. The stability across varied ecological zones follows the order: R1 > R3 > R2 > R4 > R5. (3) Factors that have a facilitating effect on vegetation FVC included relative humidity, daylight hours, and precipitation, with relative humidity having a greater influence, while factors that have a hindering effect on vegetation FVC included air temperature and wind speed, with wind speed having a greater influence. (4) Vegetation alterations are primarily influenced by climate change, while human activities play a secondary role, contributing 56.93% and 43.07%, respectively. This research underscores the necessity for continued surveillance of vegetation dynamics and the enhancement of policies focused on habitat renewal and the safeguarding of vegetation in Xinjiang. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

Back to TopTop