Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = dodecaborate(2-)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4594 KB  
Article
Synthesis of New Promising BNCT Agents Based on Conjugates of closo-Dodecaborate Anion and Aliphatic Diamino Acids
by Margarita N. Ryabchikova, Alexey V. Nelyubin, Ilya N. Klyukin, Nikita A. Selivanov, Alexander Yu. Bykov, Alexey S. Kubasov, Vsevolod A. Skribitsky, Yulia A. Finogenova, Kristina E. Shpakova, Anton A. Kasianov, Alexey A. Lipengolts, Andrey P. Zhdanov, Elena Yu. Grigoreva, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Int. J. Mol. Sci. 2025, 26(1), 68; https://doi.org/10.3390/ijms26010068 - 25 Dec 2024
Cited by 2 | Viewed by 1702
Abstract
In this work, a series of boronated amidines based on the closo-dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [B12H11NHC(NH(CH2)nCH(NH3)COOH)CH3], where [...] Read more.
In this work, a series of boronated amidines based on the closo-dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [B12H11NHC(NH(CH2)nCH(NH3)COOH)CH3], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models. The promising compound [B12H11NHC(NH(CH2)2CH(NH3)COOH)CH3]*3H2O demonstrates low toxicity (LD50 in a range from 150 to 300 mg/kg) and excellent solubility and also shows selective uptake in experimental melanoma in laboratory mice (T/N ratio remained >3 up to 60 min post-injection, with a maximum T/N of 6.2 ± 2.8 at 45 min). Full article
(This article belongs to the Special Issue New Advances in Radiopharmaceuticals and Radiotherapy)
Show Figures

Figure 1

10 pages, 2630 KB  
Communication
Enhancing Membrane Permeability of Fluorescein-Type Chromophore Through Covalent Attachment of Chlorinated Dodecaborate
by Hibiki Nakamura, Satoshi Yamamoto, Yumiko K. Kawamura, Taro Kitazawa, Mutsumi Kimura and Yu Kitazawa
Molecules 2024, 29(22), 5416; https://doi.org/10.3390/molecules29225416 - 17 Nov 2024
Cited by 1 | Viewed by 1586
Abstract
Anionic boron clusters, such as [B12X12]2− (X = Cl, Br, I), have attracted attention in pharmaceuticals due to their unique superchaotropic properties. In particular, [B12Br12]2− (1) has demonstrated strong interactions with [...] Read more.
Anionic boron clusters, such as [B12X12]2− (X = Cl, Br, I), have attracted attention in pharmaceuticals due to their unique superchaotropic properties. In particular, [B12Br12]2− (1) has demonstrated strong interactions with biomolecules, facilitating cargo translocation across plasma membranes. In this study, we investigated the effect of covalently attaching chlorinated dodecaborate moiety [B12Cl11O-]2− to 6-carboxyfluorescein (6-FAM) (3) via a PEG3 linker to form conjugate (4). We compared the membrane permeability of this covalent conjugate with that of non-covalent interactions between 6-FAM (3) and [B12Cl12]2− (2). Live-cell fluorescence imaging revealed that the covalent conjugate exhibited enhanced membrane permeability and water solubility while maintaining low cytotoxicity. These results highlight the potential of covalent conjugation with boron clusters for improving the cellular uptake of hydrophilic cargos. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

17 pages, 2149 KB  
Article
Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides
by Damian Kaniowski, Katarzyna Kulik, Justyna Suwara, Katarzyna Ebenryter-Olbińska and Barbara Nawrot
Int. J. Mol. Sci. 2022, 23(20), 12190; https://doi.org/10.3390/ijms232012190 - 13 Oct 2022
Cited by 14 | Viewed by 5257
Abstract
Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with “two faces”, namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting [...] Read more.
Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with “two faces”, namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting the epidermal growth factor receptor (EGFR) could not be rationally assigned to the positioning of the boron cluster unit: 1,2-dicarba-closo-dodecaborane (0), [(3,3′-Iron-1,2,1′,2′-dicarbollide) (1-), FESAN], and dodecaborate (2-) in the ASO chain and its structure or charge. For further understanding of this observation, we performed systematic studies on the efficiency of RNase H against a series of B-ASOs models. The results of kinetic analysis showed that pyrimidine-enriched B-ASO oligomers activated RNase H more efficiently than non-modified ASO. The presence of a single FESAN unit at a specific position of the B-ASO increased the kinetics of enzymatic hydrolysis of complementary RNA more than 30-fold compared with unmodified duplex ASO/RNA. Moreover, the rate of RNA hydrolysis enhanced with the increase in the negative charge of the boron cluster in the B-ASO chain. In conclusion, a “smart” strategy using ASOs conjugated with boron clusters is a milestone for the development of more efficient antisense therapeutic nucleic acids as inhibitors of gene expression. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 3047 KB  
Article
Hexaborate(2−) and Dodecaborate(6−) Anions as Ligands to Zinc(II) Centres: Self-Assembly and Single-Crystal XRD Characterization of [Zn{κ3O-B6O7(OH)6}(κ3N-dien)]·0.5H2O (dien = NH(CH2–CH2NH2)2), (NH4)2[Zn{κ2O-B6O7(OH)6}2 (H2O)2]·2H2O and (1,3-pnH2)3[(κ1N-H3N{CH2}3NH2) Zn{κ3O-B12O18(OH)6}]2·14H2O (1,3-pn = 1,3-diaminopropane)
by Mohammed A. Altahan, Michael A. Beckett, Simon J. Coles and Peter N. Horton
Inorganics 2019, 7(4), 44; https://doi.org/10.3390/inorganics7040044 - 27 Mar 2019
Cited by 10 | Viewed by 4576
Abstract
Two zinc(II) hexaborate(2−) complexes, [Zn{κ3O-B6O7(OH)6}(κ3N-dien)]·0.5H2O (dien = NH(CH2CH2NH2)2) (1) and (NH4)2[Zn{κ2O-B6O [...] Read more.
Two zinc(II) hexaborate(2−) complexes, [Zn{κ3O-B6O7(OH)6}(κ3N-dien)]·0.5H2O (dien = NH(CH2CH2NH2)2) (1) and (NH4)2[Zn{κ2O-B6O7(OH)6}2(H2O)2]·2H2O (2), and a zinc(II) dodecaborate(6−) complex, (1,3-pnH2)3[(κ1N-H3N{CH2}3NH2)Zn{κ3O-B12O18(OH)6}]2·14H2O (1,3-pn = 1,3-diaminopropane) (3), have been synthesized and characterized by single-crystal XRD studies. The complexes crystallized through self-assembly processes, from aqueous solutions containing 10:1 ratios of B(OH)3 and appropriate Zn(II) amine complex: [Zn(dien)2](OH)2, [Zn(NH3)4](OH)2, and [Zn(pn)3](OH)2. The hexaborate(2−) anions in 1 and 2 are coordinated to octahedral Zn(II) centres as tridentate (1) or bidentate ligands (2) and the dodecaborate(6−) ligand in 3 is tridentate to a tetrahedral Zn(II) centre. Full article
(This article belongs to the Special Issue Metal Complexes Containing Boron Based Ligands)
Show Figures

Graphical abstract

Back to TopTop