Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = distributed LEO SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8144 KiB  
Article
Thermal Optimization Design for a Small Flat-Panel Synthetic Aperture Radar Satellite
by Tian Bai, Yuanbo Zhang, Lin Kong, Hongrui Ao, Jisong Yu and Lei Zhang
Aerospace 2024, 11(12), 982; https://doi.org/10.3390/aerospace11120982 - 27 Nov 2024
Viewed by 1271
Abstract
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of [...] Read more.
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of lower cost, reduced weight, minimized power consumption, and enhanced temperature stability, an optimized thermal design method tailored for satellites has been developed, with a particular focus on SAR antennas. The thermal control method of the antenna is closely integrated with structural design, simplifying the thermal design and its assembly process, reducing the resource consumption of thermal control systems. The distribution of thermal interface material (TIM) in the antenna assembly has been carefully calculated, achieving a zero-consumption thermal design for the SAR antenna. And the temperature difference of the entire antennas when powered on and powered off would not exceed 17 °C, meeting the specification requirements. In addition, to ensure the accuracy of antenna pointing, the support plate of antennas requires stable temperature. The layout of the heaters on the board has been optimized, reducing the use of heaters by 30% while ensuring that the temperature variation of the support board remains within 5 °C. Then, an on-orbit thermal simulation analysis of the satellite was conducted to refine the design and verification. Finally, the thermal test of the SAR satellite under vacuum conditions was conducted, involving operating the high-power antenna, verifying that the peak temperature of T/RM is below 29 °C, the temperature fluctuation amplitude during a single imaging task is 10 °C, and the lowest temperature point of the support plate is 16 °C. The results of the thermal simulation and test are highly consistent, verifying the correctness and effectiveness of the thermal design. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

37 pages, 4497 KiB  
Review
Satellite Oceanography in NOAA: Research, Development, Applications, and Services Enabling Societal Benefits from Operational and Experimental Missions
by Eric Bayler, Paul S. Chang, Jacqueline L. De La Cour, Sean R. Helfrich, Alexander Ignatov, Jeff Key, Veronica Lance, Eric W. Leuliette, Deirdre A. Byrne, Yinghui Liu, Xiaoming Liu, Menghua Wang, Jianwei Wei and Paul M. DiGiacomo
Remote Sens. 2024, 16(14), 2656; https://doi.org/10.3390/rs16142656 - 20 Jul 2024
Cited by 1 | Viewed by 3273
Abstract
The National Oceanic and Atmospheric Administration’s (NOAA) Center for Satellite Applications and Research (STAR) facilitates and enables societal benefits from satellite oceanography, supporting operational and experimental satellite missions, developing new and improved ocean observing capabilities, engaging users by developing and distributing fit-for-purpose data, [...] Read more.
The National Oceanic and Atmospheric Administration’s (NOAA) Center for Satellite Applications and Research (STAR) facilitates and enables societal benefits from satellite oceanography, supporting operational and experimental satellite missions, developing new and improved ocean observing capabilities, engaging users by developing and distributing fit-for-purpose data, applications, tools, and services, and curating, translating, and integrating diverse data products into information that supports informed decision making. STAR research, development, and application efforts span from passive visible, infrared, and microwave observations to active altimetry, scatterometry, and synthetic aperture radar (SAR) observations. These efforts directly support NOAA’s operational geostationary (GEO) and low Earth orbit (LEO) missions with calibration/validation and retrieval algorithm development, implementation, maintenance, and anomaly resolution, as well as leverage the broader international constellation of environmental satellites for NOAA’s benefit. STAR’s satellite data products and services enable research, assessments, applications, and, ultimately, decision making for understanding, predicting, managing, and protecting ocean and coastal resources, as well as assessing impacts of change on the environment, ecosystems, and climate. STAR leads the NOAA Coral Reef Watch and CoastWatch/OceanWatch/PolarWatch Programs, helping people access and utilize global and regional satellite data for ocean, coastal, and ecosystem applications. Full article
(This article belongs to the Special Issue Oceans from Space V)
Show Figures

Figure 1

22 pages, 8344 KiB  
Article
Impact Analysis and Compensation Methods of Frequency Synchronization Errors in Distributed Geosynchronous Synthetic Aperture Radar
by Xiaoying Sun, Leping Chen, Zhengquan Zhou, Huagui Du and Xiaotao Huang
Remote Sens. 2024, 16(8), 1470; https://doi.org/10.3390/rs16081470 - 21 Apr 2024
Cited by 2 | Viewed by 1518
Abstract
Frequency synchronization error, as one of the inevitable technical challenges in distributed synthetic aperture radar (SAR), has different impacts on different SAR systems. Multi-monostatic SAR is a typical distributed configuration where frequency synchronization errors are tiny in distributed airborne and low earth orbit [...] Read more.
Frequency synchronization error, as one of the inevitable technical challenges in distributed synthetic aperture radar (SAR), has different impacts on different SAR systems. Multi-monostatic SAR is a typical distributed configuration where frequency synchronization errors are tiny in distributed airborne and low earth orbit (LEO) SAR systems. However, due to the long time delay and long synthetic aperture time, the imaging performance of a multi-monostatic geosynchronous (GEO) SAR system is affected by frequency oscillator errors. In this paper, to investigate the frequency synchronization problem in this configuration, we firstly model the echo signals with the frequency synchronization errors, which can be divided into fixed frequency errors and random phase noise. Secondly, we talk about the impacts of the two kinds of errors on imaging performance. To solve the problem, we thirdly propose an autofocus back-projection (ABP) algorithm, which adopts the coordinate descent method and iteratively adjusts the phase error estimation until the image reaches its maximum sharpness. Based on the characteristics of the frequency synchronization errors, we further propose the Node ABP (NABP) algorithm, which greatly reduces the amount of storage and computation compared to the ABP algorithm. Finally, simulations are carried out to validate the effectiveness of the ABP and NABP algorithms. Full article
Show Figures

Figure 1

22 pages, 6815 KiB  
Article
An Operational Processing Framework for Spaceborne SAR Formations
by Naomi Petrushevsky, Andrea Monti Guarnieri, Marco Manzoni, Claudio Prati and Stefano Tebaldini
Remote Sens. 2023, 15(6), 1644; https://doi.org/10.3390/rs15061644 - 18 Mar 2023
Cited by 6 | Viewed by 2365
Abstract
The paper proposes a flexible and efficient wavenumber domain processing scheme suited for close formations of low earth orbiting (LEO) synthetic aperture radar (SAR) sensors hosted on micro-satellites or CubeSats. Such systems aim to generate a high-resolution image by combining data acquired by [...] Read more.
The paper proposes a flexible and efficient wavenumber domain processing scheme suited for close formations of low earth orbiting (LEO) synthetic aperture radar (SAR) sensors hosted on micro-satellites or CubeSats. Such systems aim to generate a high-resolution image by combining data acquired by each sensor with a low pulse repetition frequency (PRF). This is usually performed by first merging the different channels in the wavenumber domain, followed by bulk focusing. In this paper, we reverse this paradigm by first upsampling and focusing each acquisition and then combining the focused images to form a high-resolution, unambiguous image. Such a procedure is suited to estimate and mitigate artifacts generated by incorrect positioning of the sensors. An efficient wave–number method is proposed to focus data by adequately coping with the orbit curvature. Two implementations are provided with different quality/efficiency. The image quality in phase preservation, resolution, sidelobes, and ambiguities suppression is evaluated by simulating both point and distributed scatterers. Finally, a demonstration of the capability to compensate for ambiguities due to a small across-track baseline between sensors is provided by simulating a realistic X-band multi-sensor acquisition starting from a stack of COSMO-SkyMed images. Full article
Show Figures

Figure 1

24 pages, 4891 KiB  
Article
Multi-Static Multi-Band Synthetic Aperture Radar (SAR) Constellation Based on Integrated Photonic Circuits
by Manuel Reza, Malik Muhammad Haris Amir, Muhammad Imran, Gaurav Pandey, Federico Camponeschi, Salvatore Maresca, Filippo Scotti, Giovanni Serafino, Antonio Malacarne, Claudio Porzi, Paolo Ghelfi, Antonella Bogoni and Mirco Scaffardi
Electronics 2022, 11(24), 4151; https://doi.org/10.3390/electronics11244151 - 12 Dec 2022
Cited by 12 | Viewed by 5106
Abstract
Multi-static SARs from LEO orbits allow the single-pass high-resolution imaging and detection of moving targets. A coherent MIMO approach requires the generation of multi-band, thus orthogonal, signals, the fusion of which increases the system resolution. Up to now the synchronization capability of SAR [...] Read more.
Multi-static SARs from LEO orbits allow the single-pass high-resolution imaging and detection of moving targets. A coherent MIMO approach requires the generation of multi-band, thus orthogonal, signals, the fusion of which increases the system resolution. Up to now the synchronization capability of SAR signals of different satellites is critical. Here, we propose the use of photonics to generate, receive and distribute the radar signals in a coherent multi-static SAR constellation. Photonics overcomes issues in the implementation of MIMO SAR, allowing for the flexible generation of multi-band signals and centralized generation in a primary satellite with coherent distribution to all the secondary satellites of the SAR signals over FSO links. The numerical analysis shows the proposed system has a NESZ < −29.6 dB, satisfying the SAR system requirements. An experimental proof of concept based on COTS, for both signal up- and down-conversion, is implemented to demonstrate the system functionality, showing performance similar to the simulations. The implementation of the proposed systems with integrated technologies could reduce the system SWaP and increase robustness to vibrations. A design based on the consolidated SOI platform with the transfer printing-based hybrid integration of InP semiconductor optical amplifiers is proposed. The amplifiers compensate for the losses of the passive SOI waveguides, decreasing the overall conversion loss. The polarization multiplexing of the modulated and unmodulated combs to be sent from (to) the primary to (from) the secondary satellite over the FSO links avoids complex space-consuming optical filters requiring several control signals. Full article
(This article belongs to the Special Issue Recent Advances in Silicon-Based RFIC Design)
Show Figures

Figure 1

23 pages, 19131 KiB  
Article
A Framework for Distributed LEO SAR Air Moving Target 3D Imaging via Spectral Estimation
by Yaquan Han, Runzhi Jiao, Haifeng Huang, Qingsong Wang and Tao Lai
Remote Sens. 2022, 14(23), 5956; https://doi.org/10.3390/rs14235956 - 24 Nov 2022
Cited by 2 | Viewed by 2297
Abstract
This paper aims to perform imaging and detect moving targets in a 3D scene for space-borne air moving target indication (AMTI). Specifically, we propose a feasible framework for distributed LEO space-borne SAR air moving target 3D imaging via spectral estimation. This framework contains [...] Read more.
This paper aims to perform imaging and detect moving targets in a 3D scene for space-borne air moving target indication (AMTI). Specifically, we propose a feasible framework for distributed LEO space-borne SAR air moving target 3D imaging via spectral estimation. This framework contains four subsystems: the distributed LEO satellite and radar modeling, moving target information processing, baseline design framework, and spectrum estimation 3D imaging. Firstly in our method, we develop a relative motion model between the satellite platform and the 3D moving target for satellite and radar modeling. In a very short time, the relative motion between the platform and the target is approximated as a uniform motion. We then establish the space-borne distributed SAR moving target 3D imaging model based on the motion model. After that, we analyze the influencing factors, including the Doppler parameters, the three-dimensional velocity, acceleration, and baseline intervals, and further investigate the performance of the 3D imaging of the moving target. The moving target spectrum estimation 3D imaging finally obtains the 3D imaging results of the target, which preliminarily solves the imaging and resolution problems of slow air moving targets. Simulations are conducted to verify the effectiveness of the proposed distributed LEO space-borne SAR moving target 3D imaging framework. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

15 pages, 3454 KiB  
Technical Note
An In-Orbit Measurement Method for Elevation Antenna Pattern of MEO Synthetic Aperture Radar Based on Nano Calibration Satellite
by Tian Qiu, Yu Wang, Jun Hong, Kaichu Xing, Shaoyan Du and Jingwen Mu
Remote Sens. 2022, 14(3), 741; https://doi.org/10.3390/rs14030741 - 5 Feb 2022
Cited by 2 | Viewed by 3336
Abstract
The medium-Earth-orbit synthetic aperture radar (MEO-SAR) is deployed at orbit altitude above low-Earth-orbit synthetic aperture radar (LEO-SAR, around 2000 km) and below the geosynchronous orbit SAR (GEO-SAR, near 35786 km) to cover a wide swath, which is four to five times larger than [...] Read more.
The medium-Earth-orbit synthetic aperture radar (MEO-SAR) is deployed at orbit altitude above low-Earth-orbit synthetic aperture radar (LEO-SAR, around 2000 km) and below the geosynchronous orbit SAR (GEO-SAR, near 35786 km) to cover a wide swath, which is four to five times larger than LEO-SAR. Therefore, the measurement method for the LEO-SAR elevation antenna pattern using the SAR data acquired over the Amazon tropical rainforest (ground-based method), where the typical width of rainforest area is approximately 150 km, can hardly meet the requirement of a wide swath to determine the MEO-SAR antenna elevation pattern. Moreover, several new MEO-SAR systems are now proposed that will use low frequency, and the low frequency penetration characteristics may affect the elevation antenna pattern determination using homogenous distributed targets such as the Amazon rainforest. This paper proposes a novel space-based method for the in-orbit measurement of the elevation antenna pattern of MEO-SAR based on one nano calibration satellite mounted with a receiver. Through appropriate orbit design, the nano calibration satellite can fly across the entire MEO-SAR swath along the range direction, and the elevation antenna pattern envelope can be extracted from the data recorded by the receiver. Simulation work is performed to verify the feasibility of the proposed space-based method, and the measurement accuracy of this method is analyzed. Full article
Show Figures

Figure 1

Back to TopTop