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Abstract: The paper proposes a flexible and efficient wavenumber domain processing scheme suited
for close formations of low earth orbiting (LEO) synthetic aperture radar (SAR) sensors hosted on
micro-satellites or CubeSats. Such systems aim to generate a high-resolution image by combining
data acquired by each sensor with a low pulse repetition frequency (PRF). This is usually performed
by first merging the different channels in the wavenumber domain, followed by bulk focusing. In
this paper, we reverse this paradigm by first upsampling and focusing each acquisition and then
combining the focused images to form a high-resolution, unambiguous image. Such a procedure is
suited to estimate and mitigate artifacts generated by incorrect positioning of the sensors. An efficient
wave–number method is proposed to focus data by adequately coping with the orbit curvature.
Two implementations are provided with different quality/efficiency. The image quality in phase
preservation, resolution, sidelobes, and ambiguities suppression is evaluated by simulating both point
and distributed scatterers. Finally, a demonstration of the capability to compensate for ambiguities
due to a small across-track baseline between sensors is provided by simulating a realistic X-band
multi-sensor acquisition starting from a stack of COSMO-SkyMed images.

Keywords: coherent SAR formations; MIMO SAR; azimuth multichannel SAR; SAR wave number
domain focusing; digital beamforming; SAR interferometry; topography compensation

1. Introduction

The new space economy has introduced a significant shift in the paradigm of frequent
observations, where public agencies and private companies are building constellations of
multiple small satellites. Synthetic aperture radar (SAR) plays a unique role thanks to its
all-weather monitoring and fine sensitivity to motion and deformations. Several mini SARs
have already been launched in low earth orbiting (LEO) orbit, while others are expected to
follow [1]. The present systems provide high resolution, in the meter or sub-meter range,
and good imaging capabilities, despite their compact dimensions (an overall mass of less
than a hundred kilograms). Nevertheless, achieving a high-resolution wide-swath (HRWS)
acquisition requires a large antenna and high power, increasing the minimum size of the
sensor [2]. There is a growing interest in compact formations, where few sensors cooperate,
acting as a single SAR. This concept, introduced over twenty years ago [3], has become
increasingly popular thanks to the attractive advantages of distributing resources over
small, lightweight systems, besides the intrinsic robustness, flexibility, and scalability of a
fractioned mission.

Among the many concepts proposed and widely studied [4–9], we address those
compact formations made of N satellites, where ambiguous acquisitions are joined to
generate a single, high-quality, high-resolution image. Such constellations are the basis for
CubeSat missions [4,5,10].

The system studied here is the one sketched in Figure 1a. One satellite is transmitting,
and all are receiving in a single-input-multiple-output (SIMO) configuration. All the sensors
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should ideally follow on the same track—as seen from an Earth-fixed reference so that a
single SAR image could be created by coherently combining the N acquisitions. The result
would be a gain of N in the signal-to-noise-ratio (SNR) and the possibility of imaging over
a swath N times larger than the one achievable by a single sensor. To that aim, the relative
sensor displacements along track ∆xn should comply with the anti-DPCA (displaced phase
center antenna) condition [7] :

∆xn =
2vs

N · fPRF
(n− 1) +

vs

fPRF
k, (1)

where vs is the velocity of each spacecraft, fPRF is the pulse repetition frequency, and
n = (1, . . . , N) is the index of the sensor. Note that the second term in (1) is not strictly
needed to fulfill the anti-DPCA condition; however, an integer number (k) of samples are
added to allow safe distancing between the satellites and avoid collisions. k should be kept
moderately small, such that all sensors observe almost the same Doppler spectrum. The
logic of Equation (1) is explained in Figure 1b, which shows the sampling grids, along-track,
of N = 3 sensors. The circles mark the positions of the sensors’ phase centers when echoes
are collected by each sensor. The upper diagram reports the sampling grid that results by
joining the monostatic phase center from sensor S1 and the equivalent ones made by the
bistatic pairs S2-S1 and S3-S1. The effective grid is regularly sampled at 1/N of the original
pulse repetition interval (PRI), allowing the generation of a single SAR image where N − 1
ambiguities are removed [3,6,8,9,11,12].
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Figure 1. (a). Geometry of the SIMO close formation, where one sensor is transmitting, and all are 65 
receiving. (b). Along-track sampling grid in the case of N = 3 satellites, assuming the optimal anti- 66 
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a wide-swath acquisition is constrained by range ambiguities. A compact SIMO formation 73 
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Figure 1. (a) Geometry of the SIMO close formation, where one sensor is transmitting, and all
are receiving. (b) Along-track sampling grid in the case of N = 3 satellites, assuming the optimal
anti-DPCA condition. The colored circles mark the position where each echo is acquired. Triangles
represent the phase centers of bistatic acquisitions. The upper row shows the sampling grid, resulting
from combining all sensors.

The along-track oversampling is particularly relevant for satellites with a compact
antenna, such as for CubeSATs [4,5]. These sensors can carry an antenna of limited size,
which requires a high PRF to avoid azimuth ambiguities. However, increasing the PRF in a
wide-swath acquisition is constrained by range ambiguities. A compact SIMO formation
can solve the well known PRF trade-off [2], which adds to the implicit advantages of
flexibility, scalability, robustness, and cost-effective features of formations and constella-
tions. Beyond SIMO, several other concepts have been proposed where all the sensors are
transmitting and receiving, i.e., multiple input multiple output (MIMO) configurations,
which would keep the ambiguity mitigation property while extending the power gain from
the factor N to a factor N2 [7,12–15].

This paper addresses the SIMO case, but generalization to the MIMO concepts would
be straightforward. Without loss of generality, we will focus on a formation with N = 3
satellites, whose parameters are detailed in Table 1. The X-band is adopted by most modern
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small SAR constellations, providing wide bandwidths while using compact power devices
and small antennas.

Table 1. Symbol list (left) and values of system and processing parameters (right).

Parameter Symbol Parameter Symbol Value

Central angular frequency ω0 Wavelength λ 0.0312 m
Azimuth x Carrier frequency f0 9.6 GHz
Slow time τ Bandwidth B 100 MHz
Fast time t Antenna length La 3 m

Squint angle ψ Mean slant range r 640 km
Speed of light c Incidence angle θ 30◦

Baseband range wavenumber k′r Velocity vs 7650 m/s
Azimuth wavenumber kx Swath depth (ground range) 30 km

Sampling angular frequency kxs Pulse Repetition Frequency fPRF 2.2 kHz
Azimuth Resolution 1.5 m

Ground Range Resolution 3 m
Synthetic aperture Ls 6.6 km

Processing the set of N undersampled raw datasets into a fine-resolution single look
complex (SLC) image is straightforward if the anti-DPCA condition is met. It would be
enough to generate the upsampled data by properly delaying and interleaving, according
to Figure 1b, performing a bistatic to monostatic compensation, and proceeding with
conventional SAR focusing. However, condition (1) is met only with some accuracy in
the general case. It is still possible to generate a good quality SLC image by a proper
wave–number domain multichannel inversion described in [6–8,10,12]. The correction is
usually applied to the range-compressed data (RGC) before proceeding to the azimuth
focusing, as shown in Figure 2a. The recombination in the raw data domain is the most
natural [7], but it is neither correct nor desired in many real scenarios. First, one may wish
to distribute raw data processing, for example, onboard each satellite. Secondly, but not less
importantly, multichannel recombination requires knowledge of the system’s timing and
position with high precision. Such accuracy can be obtained by estimating the parameters
from the focused data before merging the channels.
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the range compressed data dn. (a) According to the conventional approach, upsampling and 101 
Figure 2. Processing schemes for focusing SAR data acquired by compact SIMO formations from the
range compressed data dn. (a) According to the conventional approach, upsampling and multichannel
recombination are performed before focusing. (b) The proposed method reverses the scheme by
up-sampling and focusing each acquisition and then recombining in post-processing.

Alternatively, one could first upsample and focus each RGC data. The obtained
ambiguous images can then be used to estimate and perform local corrections. Finally, the
corrected datasets are merged to cancel ambiguities. The efficient implementation of this
idea, depicted in Figure 2b, is the aim of this paper.
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As for the bulk focusing of every single image and the multichannel recombination,
wavenumber domain methods are mainly adopted for LEO orbiting systems, thanks to
their simplicity and efficiency. However, those methods were developed for rectilinear
tracks, and their adaptation to the curved orbit limits their phase preservation [16–18]. To
cope with that, we discuss a full numerical wavenumber processor attaining high efficiency
and quality. In particular, the phase preservation, analyzed with the methods provided
in [19,20], fulfills the most rigorous requirements [21,22]. Moreover, these methods are
checked by simulating realistic scenarios made by both distributed and point targets.

The paper is organized as follows: in the next section, the methods for processing
multichannel SIMO data are reviewed and critically discussed. Then, Section 3 details
the processing framework in Figure 2b and proposes two efficient implementations: the
numeric monochromatic (NM) approach and the numeric chirp-Z (NCZ) one, compar-
ing their quality versus efficiency, with particular attention to their phase preservation.
Section 4 details results achieved with simulations of point and distributed targets and
shows an example of mitigating ambiguities due to an unknown across-track baseline. The
motivation of the processor is discussed, together with an analysis of the efficiency and
quality of results. After conclusions, two appendixes with details on the numerical wave
number domain processor are given.

2. Multichannel Processing of Data from Compact SIMO Formation

The usual approach for multichannel recombination is shown in Figure 2a [8,9,23,24].
The set of N range compressed datasets is transformed into the azimuth wavenumber
domain (kx) and then merged to a wideband spectrum by the following matrix operator,
which is applied to each sample in the Doppler spectra:

V = G ·D V1(kx)
V2(kx + kxs)

VN(kx + Nkxs)

 =

 g11 . . . . . .
. . . gnm . . .
gN1 . . . gNN

D1(kx)
. . .

DN(kx)

 (2)

where D is the [N,1] column vector formed by taking one spectral sample for each data set,
G is the reconstruction matrix formulated, for example, in [8,9,12], and V is a [N,1] vector
with unfolded spectral contributions.

The effect of the multichannel recombination on two-dimensional data spectra is
demonstrated in Figure 3. In particular, Figure 3a shows the ideal wideband spectrum
of the fine-resolution image to be reconstructed. The undersampling of each acquisition,
caused by the low PRF, creates a N-time spectral folding along kx, as shown in Figure 3b.
The generation of the full-resolution single look complex image can be split into the
following steps:

1. The data acquired by the n-th sensor are upsampled by first transforming into the
Doppler domain and then replicating (mosaicking) N-times to form the complex
spectrum shown in Figure 3c.

2. Each of the N spectral replicas is weighted by the term gn,m (n being the image, and m
it the replica) according to (2).

3. All N images are summed together, obtaining a single RGC with a broad Doppler spectrum.
4. The data are focused, obtaining the final fine-resolution ambiguity-free image.

The approach we propose inverts steps 3 and 4 to obtain a set of focused images before
compensating for the ambiguities. Loosely speaking, we first focus all the data on the fine
grid of Figure 1b, but we do not sum them until residual knowledge errors are estimated
and compensated.
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Figure 3. Wideband fine resolution signal reconstruction in the (kx, kr) wavenumber domain for
N = 3 channels. (a) Spectral support of the fine-resolution wideband SAR scene. (b) Support of
the scene observed from each SIMO channel that is folded by the N time downsampling. (c) By
mosaicking N-times the spectrum in (b), we generate a wide-band one that contains the fine resolution
spectrum (a), represented with dots plus ambiguous contributions.

The equivalence of the two approaches stems from the linear superposition are sug-
gested in Figure 4 As an example, let us formulate the multichannel recombination (2) by
feeding only the first acquisition (and the others being null):

V(kx) =

 V1(kx)
V2(kx + kxs)

VN(kx + Nkxs)

 =

 g11 . . . . . .
. . . gnm . . .
gN1 . . . gNN

D1(kx)
0
0

 =

D1 · g11
D1 · g21
D1 · gN1

 (3)
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Figure 4. Schematic block diagram for focusing a single acquisition at full resolution.

Equation (3) can be interpreted as a weighted combination of the N-times mosaicked
Doppler spectra of the first image, where the weights are the elements g1,n(kx) of the matrix
G, represented in Figure 3c. Then, by switching the weighted combination (3) and the
focusing kernel, we obtain the alternative procedure of Figures 2a and 4, where data are
first oversampled and focused and then recombined as post-processing.
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3. Efficient and Flexible Wavenumber Domain Implementation

The objective of the section is to define a numeric wavenumber domain (WD) imple-
mentation of the entire procedure in Figure 2b, which adequately copes with the curved orbit.

3.1. Implementation of Curved Orbit Focusing and Upsampling

WD focusing kernels were derived for rectilinear tracks, and their adaptation to the
curved orbit case introduces phase errors and biases [16,22,25]. Several alternatives were
developed in the literature based on modified, extended chirp-scaling approaches [26–28].
However, these approaches are not really needed for the case discussed here, whereas fast
and accurate enough kernels can be formulated by numerical methods [19,25,29]. More
specifically, let us start from the classical approach for straight orbit derived in Appendix A.
The focused scene can be expressed in the azimuth wavenumber and range domain as
from (A9):

U(kx, r′) =
∫

Uc(kx, ω) · exp(−jβ0(kx) · r′) · exp
(

jω 2r′
c · β1(kx)

)
dω

Uc(kx, ω) = D(kx, ω)H∗c0(kx, ω) · exp
(
−j ω+ω0

c/2 t0

) (4)

where r0 is the slant range of the target closest to the sensor, r′ = r − r0 is the rela-
tive slant range, D(kx, ω) is the two-dimensional-FT of the RGC data, Hc0(kx, ω) is the
two-dimensional-FT of the impulse response of a target at a range r0, and β0,β1 are two
parameters originated by the series expansion of the exact operator (A20).

To generalize (4), the kernel Hc0 should be evaluated numerically for the curved orbit,
as shown in Appendix B. One can easily check that doing so (4) would provide the proper
focus for those targets located at the closest approach, r0, which corresponds to r′ = 0.

The role of the parameters β0,β1 is then to extend the depth of focusing to targets at
any range r′ = r− r0 ≥ 0, within some approximation. To find the best values of those
parameters, we first evaluate the spectrum of the target at range r′, which can be expressed
as H∗c (kx, ω, r′) = Hc0 · exp(jφd(kx, ω, r′)), and then we impose the fit:

exp(jφd(kx, ω, r′)) ' exp
(

r′ ·
(

β0(kx) + β1(kx) ·
2ω

c

))
. (5)

In particular, two numerical methods are proposed here: the numerical monochromatic
(NM) and the numerical chirp-Z transform (NCZ), summarized in Figures 5 and 6. They
differ in the fitting accuracy of (5). The fastest method, the NM, imposes β1 to be unitary,
and then implements (4) by an inverse FT. The slowest, but most accurate, (NCZ), accounts
for non-unitary β1 by implementing (4) as an inverse chirp-zeta transform (CZT) at the cost
of three fast Fourier transforms (FFT) [30].

The coefficients β0(kx), β1(kx) are evaluated as the best approximation of (5):

φd
(
ω, kx, r′

)
' r′ ·

(
β0(kx) + β1(kx) ·

2ω

c

)
, (6)

To this aim, we estimate the phase surface numerically φd for M ≥ 2 range bins (rm)
as described in Appendix B, obtaining, for each kx, a matrix Φk = {φ d(ωn, r′m; kx)} of size
[N,M]. Then, the vector B = [β0β1]

T is retrieved by the least square fitting of (6):

Φk ' A · B · ∆T
r

A =


1 1

. . . . . .

. . . 4π fs
c·N n

. . . . . .
1 4π fs

c (N − 1)

; B =

[
β0(kx)
β1(kx)

]
; ∆T

r =
[
0 . . . (M− 1)dr

] (7)
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where fs is the sampling frequency and dr is the step of the slant-range grid assumed in (6).
The solution is:

B =
(

AT ·A
)−1
·AT ·Φk ·

∆T
r

∆T
r · ∆r

= A† · Φk∆T
r

∑m m2d2
r

(8)

where A† is the pseudoinverse of A.
In the NM approach, the procedure simplifies, since we impose β1 = 1. Therefore β0 is

retrieved by fitting (6) near the end of the processing block, rM:

β0 =
φd(ω0, kx, rM)

rM
− 2(ω + ω0)

c
(9)

Notice that, for the straight orbit, the numeric approach defaults to the classical
one [16,31,32], as results from (A4) and (9):

β0 =

√(
ω + ω0

c
2

)2
− k2

x −
2(ω + ω0)

c
' − k2

xc
4ω0

(10)

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 24 
 

 

In particular, two numerical methods are proposed here: the numerical monochro- 194 

matic (NM) and the numerical chirp-Z transform (NCZ), summarized in Figure 5 and Fig- 195 

ure 6. They differ in the fitting accuracy of (5). The fastest method, the NM, imposes 𝛽1 196 

to be unitary, and then implements (4) by an inverse FT. The slowest, but most accurate, 197 

(NCZ), accounts for non-unitary 𝛽1 by implementing (4) as an inverse chirp-zeta trans- 198 

form (CZT) at the cost of three fast Fourier transforms (FFT) [30]. 199 

 200 

Figure 5. Flow chart for the NCZ processor. 201 

 202 

Figure 5. Flow chart for the NCZ processor.

3.2. Phase Preservation

The phase preservation of the focusing approach is evaluated here by considering a
typical orbit of a LEO SAR at 500 km altitude. Specifically, we started from a TLE file of
Capella Space 4, whose main orbit parameters are listed in Table 2. A set of state vectors
(SVs) was generated with the MATLAB aerospace toolbox and used for simulation and
focusing. We remind our readers that the interest here is to show the capability of the
processor to cope with the orbit curvature.



Remote Sens. 2023, 15, 1644 8 of 22

Table 2. Kepler orbit element assumed for simulations and performance evaluation TLE form
Capella-4. RAAN stands for the right ascension of the ascending node.

Semi-Major
Axis Eccentricity Inclination RAAN Arg of Periapsis

6892.2 km 8.2 × 10−3 97.5◦ 112.3◦ 307.16◦

The phase preservation can be checked by evaluating, for each range, the error in
fitting (6):

φerr
(
r′, kx, ω

)
= φd −

(
r′ ·
(

β0(kx) + β1(kx) ·
2(ω + ω0)

c

))
(11)
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Figure 6. Flow chart for the NM processor that attains the highest efficiency.

That phase error, evaluated for kx corresponding to 0.6◦ squint, has been represented
in Figure 7 as a function of frequency and range. We assume a processing block of 5 km
in the slant range, which does not introduce any limitation, since it is much larger than
the range migration (~8 m). A block-wise implementation is not only needed for quality,
but also desired for efficiency and parallelism. NCZ has a negligible peak phase error, less
than 5 mrad, whereas, for the NM version, the error is noticeable, but it is less than the
acceptable limit of 1 radian [17,32].

Phase bias is even more critical than the peak error since slight values could lead to
visible artifacts in the interferometric products [33]. Such bias is one of the major limitations
in implementing a processor defined for rectilinear geometries, even for very small blocks,
hindering an efficient implementation. The bias can be evaluated by integrating the phase
error (11) as a function of range:

φbias
(
r′
)
= ∠

x
exp(j φerr

(
r′, kx, ω

)
)dkxdω, (12)
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Results are shown in Figure 8 for the block size of 5 km for both methods. The bias is
kept within ~2 mrad in both cases, which fulfills the very stringent conditions of the CEOS
offset test [21].
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3.3. Multichannel Recombination

The multichannel recombination, discussed in Section 2, requires the knowledge of
the inverse matrix G(kx) that can be computed as in [24]:

G(kx) = H(kx)·
(

H*(kx) ·H(kx) + kw IN

)−1
, (13)

where IN is the [N,N] identity matrix, and kw is the Wiener parameter that rules the trade-
off between ambiguities suppressions and SNR. The [N,N] matrix H is made by pure phase
terms, Hnm, that implement the correction between the effective bistatic system made by
the n-th sensor and the transmitter and the monostatic equivalent used for focusing (A1).
For the rectilinear track [8,11,12]:

Hnm(kx, ω) = exp

(
−j

ω0

c
(xn − xm)

2

4 · rp

)
· exp

(
j
xn + xm

2
kx

)
, (14)
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where xn is the along-track position of the n-th receiver, and xm is the transmitter’s position.
The first exponential in (14) compensates the bistatic path excess w.r.t the equivalent
monostatic sensor positioned at (xn + xm)/2. For a target located in (xp, rp), the path
difference amounts to:

∆R = Rbis(Sn, Sm, P)− 2Rmono

(
S n+m

2
, P
)

=
√

r2
p +

(
x− xn − xp

)2
+
√

r2
p +

(
x− xm − xp

)2 − 2
√

r2
p +

(
x− xn+xm

2 − xp
)2 (15)

'
(

x− xn − xp
)2

2rp
+

(
x− xm − xp

)2

2rp
− 2

(
x− xn+xm

2 − xp
)2

2rp
=

(xn − xm)
2

4·rp
. (16)

This term is a delay that is approximated for a monochromatic system by:

Hnm(ω) = exp
(
−j

ω + ω0

c
∆R
)
'exp

(
−j

ω0

c
∆R
)
= exp

(
−j

ω0

c
(xn − xm)

2

4·rp

)
, (17)

that is consistent with (14). We point out that this term is so slowly varying with range
that it can be kept constant for the whole processing block of 5 km (see Section 3.3). It
would change the phase term only by a few parts per million, according to the parameters
in Table 2, even for a large sensor separation of 1 km.

The second term in (14) is the along-track shift needed to align the focused image to
the equivalent monostatic sensor located in (xm + xn)/2. This shift is not correct for the
curved orbit.

The simplest way to adapt the recombination to the actual case is to replace (14) with
the residual operator:

Hnm
(
kx, ω, rp

)
'
∫

exp
(

jω
c
(

Rnm
(
ω0, rp

)
− 2Rm

(
ω0, rp

)))
· exp(−jkxx) · dx, (18)

where Rnm is the bistatic hodograph computed for the n-th sensor and the receiver, assum-
ing a target at mid-range rp, and 2Rm is the monostatic one. The spectrum (18) is computed
as described in the Appendix B, but assumingω=ω0 and approximated to the first order in
kx. It is important that all hodographs are computed by assuming the same azimuth, as
well as slant range (x,r) reference, which would implicitly compensate for the along-track
shifts of the different sensors.

4. Results

The quality of the overall focusing and multichannel reconstruction as post-processing
has been tested by simulating a realistic scenario of point and distributed targets acquired
by a sensor moving along the 500 km LEO orbit described in Table 2. The parameters of the
system and mission are listed in Table 1. We have generated two sets of simulated data:

• a set of nine-point targets, spanning an entire processing block of 5 km in slant range
and five footprints in azimuth;

• a set of distributed targets spanning a block of 1 km in slant range and three footprints
in azimuth.

A complex random noise was added to the RGC data in both cases. We have considered
a relative sensor distance of about 150 m, with two different configurations:

• the optimal sensor displacements, foreseen by the anti-DPCA condition (1), for which
perfect ambiguities-free recombination could be achieved;

• shifting the second and third sensors, respectively, by 50 cm and −50 cm w.r.t the case
above. So doing, the equivalent monostatic phase centers are shifted by ±25 cm, a
significant fraction of the fine image resolution La/2 = 1.5 m. This condition stresses
the capability of the inversion to remove ambiguities as much as possible.
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The matrix inversions (13) have been computed by assuming the Wiener parameter
kw = 0.3. The most efficient NM version was used for focusing, as it did not lead to
appreciable artifacts, in concordance with the results of Section 3.3, even considering a
squint angle of 0.2◦ and the largest block of 5 km.

4.1. Point Target Analysis

The set of nine-point targets is represented in Figure 9, which draws the amplitude
of one of the N = 3 range-compressed, subsampled images. Stars mark the zero-Doppler
position of the targets. After focusing and multichannel recombination, the end-to-end
impulse response function along range and azimuth is drawn in Figure 10. A significant
oversampling has been applied to assess resolution and sidelobes. However, almost no
difference is found in the impulse response functions of all targets, where the nominal slant
range and azimuth resolutions of ~1.5 m were measured. The plots of Figure 10 refer to the
non-ideal sensor displacements. Still, no difference could be appreciated to the ideal one,
similar to the behavior close to the target position.
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Figure 10. Zoom of the multichannel recombined focused impulse response of the nine point-targets
in range (a) and azimuth (b). Each panel draws the superposition of nine almost identical plots.

The suppression of ambiguities by the multichannel combination is evaluated by the
energy of the focused impulse response, integrated over range and azimuth, for the target
in the middle of the scene in Figure 11. The top panel of Figure 11 refers to the ideal
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along-track positioning of the sensors, in which only the ambiguities coming from the 3 m
SAR antenna are visible. In the bottom panel, the wrong positioning of the two receiving
sensors, by 0.5 and −0.5 m w.r.t the optimal case, is considered. The positional error
causes 2 × (N − 1) = 4 additional ambiguities. The ambiguities’ energy level is evident but
comparable to the one of the fine resolution SAR. Note that the same results are obtained
when performing the combination before and after focusing, as seen in Figure 11b,c. This
qualifies the whole processing chain and the positioning error.
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Figure 11. Plots of the energy of the target located at 4.28 ms, in Figure 9, integrated over three
resolution cells in azimuth and all over range. The three cases correspond to the ideal anti-DPCA
sensor spacing (a), and to the realistic condition where the second and third sensors are furtherly
shifted along-track by 50 cm and −50 cm, (b,c). (b) This refers to the traditional method and (c) to the
proposed approaches, as defined in Figure 2.

4.2. Distributed Area Target Analysis

Point target simulation provides all the input to evaluate the end-to-end performance
regarding resolution, sidelobes, and ambiguities. However, distributed targets help to
analyze ambiguity structures and their suppression. To that aim, we have generated a set
of patches of different shapes distributed over the whole image. The map of the simulated
distributed scene is provided in Figure 12a, representing the ground truth. The overall scene
size is that of a processing block, 1 km × 12 km (slant range, azimuth), where the small area
patches result from half a million-point targets overall. The range-compressed, azimuth-
defocused data are shown inb, referred to as one of the N = 3 acquisitions. The illumination
pattern of the wide-aperture antenna is visible, extending for the entire footprint and at
least one sidelobe.

The amplitude of data after focusing and multichannel recombination as post-processing,
following the entire chain in Figure 2b, is represented in Figure 13. Multi-looking over local
windows of 3 × 3 samples was performed. In the case of perfect spacing (Figure 13a), only
the ambiguities due to the 3 m antenna can be seen. The amplitude of such ambiguities w.r.t
the target is smaller than −25 dB, which is comparable to the typical values of spaceborne
SAR systems, such as Sentinel-1 [34].
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In the other case, Figure 13.b also shows the residual ambiguities from the improper
multichannel recombination. They are at the same level of those due to the SAR antenna,
and therefore they are acceptable in a SAR mission.

4.3. A Realistic Scenario: The Impact of Across-Track Baselines

So far, we have assumed the same track for all the sensors in a fixed Earth reference.
Yet, even the best design and control of the formation flying would leave some residual
offset between sensor tracks, as shown, for example, in [35–37]. We then assumed that the
tracks of the second and the third satellites are displaced respectively by 1 m and −1 m
in the direction perpendicular to the line-of-sight, w.r.t the track of the first sensor. For
simplicity, we keep this offset constant within a few synthetic apertures, lasting a couple
of seconds.

The across-track baseline results in an unwanted multiplicative phase screen, differ-
ent for each channel, which interferes with the correct multichannel recombination and
prevents suppression of ambiguities. The proper compensation of this effect is quite com-
plicated, and it is indeed one of the major objectives of the present literature [12,38,39].
However, for small baseline and smooth topography, first-order mitigation could be per-
formed as suggested in [6,39,40], which consists in estimating the residual phase screen,
given the precise knowledge baselines and the elevation of the scene’s center, and removing
it prior to the multichannel recombination.

We simulated the compensation of the across-track baseline in two scenarios. First,
the conventional method was employed, as described in Figure 2a. Since the phase screen
was essentially along the range, the compensation task can be performed on the range
compressed images. However, the specific orbit knowledge for near real-time applications
is limited to several centimeters [41]. We assumed a 1 cm error in the knowledge of
both normal and perpendicular directions. Such lack of precision affects the accuracy of
the computation of the phase screens and then hinders the quality of the multichannel
combined image. The result of the conventional processing is shown in Figure 14a: the
quality is compromised by the uncompensated ambiguities, which spread throughout
the image.

The figure was generated by simulating a set of N = 3 multichannel data. A complex
reflectivity map, obtained by multi-temporal averaging over 80 COSMO-SkyMed images,
was used with a DEM and sensor’s orbit to simulate the source RGC data.

The procedure in Figure 2b was implemented by upsampling and focusing separately
on the three datasets. This allowed for a fine, data-driven baseline estimation with a sub-
millimetric accuracy, as from [42–44]. The refined baselines are then used to compute the
precise topographic phase screens shown in Figure 14c,d. The phase variation is tiny, yet its
compensations lead to the final-multichannel image, shown in Figure 14b, which is almost
free from ambiguity clutter.

4.4. Efficiency

The proposed approach, which first upsamples and then merges the N ambiguous
focused images, is clearly less efficient than the classical merge and upsample procedure.
To assess performance, a set of prototype Matlab codes for the different methods has
been profiled and optimized to evaluate and compare their efficiency. In particular, we
have considered the numerical monochromatic and the numerical chirp-Z approaches and
measured the computing time on a modern eight-core desktop PC. The time reported in
Table 3 refers to focusing one range compressed data block as in Figure 9, approximately
5000× 9400 samples. The cost of the “multichannel recombination” in the bottom left of the
table has been estimated by assuming the recombination as a fast convolution implemented
in ten blocks along the azimuth. Notice that the recombination is essentially a fractional
resampling, as from (14), requiring a very short operator in the along-track space. In the
most favorable case, where condition (1) is perfectly met, one could interleave the focused
data at no cost.
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Figure 14. (a) Simulation of the SIMO image generated by assuming an incorrect knowledge of the
across-track baselines of the three sensors. The represented amplitude is remarkably affected by
ambiguities. The mitigation of ambiguities has been achieved according to the proposed approach
by separately focusing the three images, estimating the phase screens (c,d), and compensating from
images #2 and #3 before combining them into the final one, shown in (b).

Table 3. Computing times, in seconds, measured for the MATLAB prototypes of the various process-
ing blocks.

Upsampling, Focusing and Multichannel Combination Multichannel Combination with
Upsampling and Focusing

NM NCZT NM NCZT

Data Focusing 5.1 (×3) 22(×3)
12 29

Multichannel
recombination 1.1

From the table, one notices that the conventional approach, on the right column, is
the most efficient, where the NM method is approximately 2.5 times faster than the NCZT
one. However, if we implement the proposed approach, where the images are up-sampled
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and focused on-the-fly, by each sensor, then the overall computing time is half of the
usual approach.

5. Conclusions

A new processing framework has been proposed, suited for compact SAR formations
where acquisitions from different sensors are combined into a unique full-resolution image,
such as SIMO or MIMO SAR. The processing scheme is based on oversampling and focusing
on each acquisition, while leaving the multichannel reconstruction as the last step. This
procedure is useful to integrate the estimation and compensation of impairments acting on
a local space-varying scale, similar to the effect of topographic phases.

A very efficient, full numerical implementation of monostatic focusing and multichan-
nel recombination has been discussed. The result is a phase-preserving processor whose
efficiency is compared to a couple of bidimensional FT. The scheme has been validated with
point and simulated targets generated by assuming the orbit of a typical LEO SAR flying at
500 km altitude. The method has been shown effective for the mitigation of ambiguities
due to unknown across-track baselines between sensors by simulating a realistic SAR scene,
starting from X-band Cosmo-SkyMed data.
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Appendix A. Derivation of Focusing Kernels for Curved Orbit

WD focusing has been used for over three decades for its efficiency and quality, and
it is the one usually assumed for SIMO formations. Here, we start from the basics of
SAR focusing on deriving two efficient approximations suited for the curved orbit of an
LEO sensor. The focused image in the azimuth, as well as slant range domain, u(x,r), are
obtained by the convolution along azimuth of the range compressed data d(x,t) with the
matched phase kernel [32]:

u(x, r) =
∫

d(x, t− t0)
⊗

xh∗
(

x, t− 2r
c

; r
)

dt, (A1)

where t0 is the time for the first raw sample, according to the geometry sketched in
Figure A1,

⊗
x stands for correlation along azimuth, h*( ) is the focusing kernel, phase-

matched to the impulse response of a target located in (x,r). Factor two in the argument of
h*, the two-way range of the monostatic SAR, is here addressed.
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To derive the WD scheme, we transform both members of (A1) from x to kx, and we
use Parseval identity to evaluate the time domain integral [16]:

U(kx, r) =
∫

D(kx, ω) · H∗(kx, ω; r) · exp
(
−j

ω + ω0

c/2
t0

)
dω. (A2)

We are not interested in evaluating the focused data from the origin, r = 0, but rather
from a minimum slant range, r0, as shown in Figure A1. Then, the focused field to be
estimated is U0:

U0
(
r′
)
= U

(
r′ + r0

)
=
∫

D(kx, ω) · H∗
(
kx, ω; r′ + r0

)
· exp

(
−j

ω + ω0

c/2
t0

)
dω, (A3)

where r’ = r − r0 is the actual range axis of the focused image.
In the case of a straight orbit, the kernel H is the filed propagation operator [16]:

H∗(kx, ω, r) = exp

jr ·

√(ω + ω0

c/2

)2
− k2

x

 (A4)

That can be plugged into (A3), giving:

U0
(
r′
)
= U

(
r′ + r0

)
=
∫

D(kx, ω)·H∗(kx, ω; r0)·H∗
(
kx, ω; r′

)
· exp

(
−j

ω + ω0

c/2
t0

)
dω (A5)

For small squint angles, as usually is for LEO SAR, the kernel H*( . . . ) can be approxi-
mated to the first power ofω:

U(kx, r′) = Φ0(r′, kx) ·
∫

U0(kx, ω) · exp
(

jr′ · 1
4

k2
xc

ω2
0

ω

)
exp

(
−jω 2r′

c

)
· dω

U0(kx, ω) = D(kx, ω)H∗(kx, ω, r0) · exp
(
−j ω+ω0

c/2 t0

)
Φ0(r′, kx) = exp

(
−jr′

(
k2

xc
4ω0

+ 2ω0
c

)) (A6)

Equation (A6) is the one that drives the efficient implementation of many WD proces-
sors [16,31,32,32,45–47]: the two-dimensional transform of the data is first multiplied by
the matched phase reference H∗(kx, ω, r0), resulting in the term U0(kx, ω). Thereafter we
can identify two different approaches.

The first one results from ignoring the first exponential within the integral (A6) in
favor of the second:

1
4

k2
xc

ω2
0
� 2

c
→ ω2

ω2
0

sin2 ψ

2
� 1 (A7)
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Then, (A6) becomes an inverse FT fromω to t = 2r’/c:

U(kx, r′) = Φ0
(
r′, kx

)
· F−1{U0(kx, ω)}t= 2r′

c
(A8)

This method is known as the monochromaticωk [16,31,32]. We observe that approx-
imation (A7) is well acceptable in the X-band, since both the antenna aperture and the
fractional bandwidth, ∆ω/ω0, are pretty small.

The second approach is a straight implementation of (A6) with no approximation,
which would be suited for wide antenna aperture and/or large fractional bandwidths,
similar to the case for L-band systems. The implementation relies in on the use of the
chirp-Z transform [30,46]. We need to rewrite (A6) as follows:

U(kx, r′) = Φ0(r′, kx) ·
∫

U0(kx, ω) · exp
(
−jω 2r′

c (1 + α)
)
dω

α = 1
8

k2
xc2

ω2
0
� 1 (A9)

To acknowledge in (A9) an inverse CZT, a Fourier transform is computed in the
linearly-scaled time axis. The method, conceptually equivalent to the chirp scaling ap-
proach [18], is more time-consuming, as it requires three FTs instead of one, which is the
case for the monochromatic case.

Appendix B. Numerical Implementation of the WD Kernel

We detail here the numerical implementation of the phase-matched WD focusing
operator, evaluated for an impulsive target P located in the slant range r. We assume the
acquisition monostatic, where the sensor moves along a curved path, defined by the state
vector S(τ) = {Sx(τ), Sy(τ), Sz(τ)}, τ being the slow time reference. The SAR acquisition is
then modeled by the impulse response:

h(τ, r) = p
(

t− R2m

c

)
· exp

(
−j2ω0

R2m

c

)
, (A10)

where p(t) is the range compressed pulse (that we assume here ideal with constant power
spectrum), t is the fast time, and R is the hodograph, the two-way sensor-target distance:

R2m(τ; r) = 2|S(τ)− P(r)|. (A11)

We assume the reference slant range, azimuth plane directed along the mean satellite
velocity along-track, where azimuth axis is x = vsτ. We remind our readers that SAR
focusing is accomplished by correlation with a kernel that is phase-matched to the impulse
response (A10). Its two-dimensional Fourier transform (FT) is [32]:

Hg(ω, kx; r) = exp
∫
(j(Ω · R2m) · exp(jkxx))dx

where Ω = (ω+ω0)
c

(A12)

The expression for hyperbolic hodograph for the straight orbit is in (A4). In the generalized
case of a curved orbit, we can evaluate Hg by the numerical implementation of the method
of stationary phase [19,25,29,48]. According to this method, the FT in (A12) is approximated
as follows:

Hg(ω, kx; r) ' exp
(

j
(

Ω · R2m

(
τf

)
+ kx · vs · τf

))
, (A13)

where τf are the stationary phase times, those nulling the derivative of the phase:

Ω
∂R2m

∂τ

∣∣∣∣
τ=τf

+ kx · vs = 0⇒ ∂R2m

∂τ

∣∣∣∣
τ=τf

= − kx

Ω
· vs, (A14)
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For the numerical computation of the two-dimensional spectrum Hg, we define a uniform
grid spanning the support in (kx, Ω):

4π

c

(
f0 −

B
2

)
≤ Ω ≤ 4π

c

(
f0 +

B
2

)
4π

fdc
vs
−

fpr f

2vs
≤ kx ≤ 4π

fdc
vs

+
fpr f

2vs
(A15)

where fdc is the Doppler centroid. We compute the value of the parameter:

ξ = − kx

Ω
(A16)

for each point in the (kx, Ω) grid. Given ξ, we compute the stationary time, tf, as the
solution of:

∂R2m

∂τ

∣∣∣∣
τ=τf

= ξ · vs. (A17)

This stationary time is then plugged into (A13) to compute the kernel spectrum
Hg(ω, kx).

A very effective method to solve (A14) is the one proposed in [29]. We first compute a
polynomial approximation for the two-way hodograph (A11): a fourth-order one is well
enough for our case:

R2m

(
x = vs · τf

)
= a0 + a1τf + a2τ2

f + a3τ3
f + a4τ4

f , (A18)

then we derive it according to (A14):

ξ =
1
vs

∂R2m

∂τ
=

1
vs

(
a1 + 2a2τ + 3a3τ2 + 4a4τ3

)
, (A19)

that we may rewrite as:
ξ − b0 = b1τ + b2τ2 + b3τ3

where bn = an
vs

, (A20)

The solution of (A14) needs to compute τf, given ξ, which is accomplished by comput-
ing the reverse polynomial series [49]:

ξ f = d1 · (ξ − b0) + d2 · (ξ − b0)
2 + d3 · (ξ − b0)

3

where
d1 = b−1

1
d2 = −b−3

1 b2
d3 = b−5

1
(
2b2

2 − b1b3
) , (A21)

The method is summarized in the flowchart of Figure A2a, implemented by the
following steps:

• Compute the two-way hodograph that is double the Euclidean distance between the
sensor (all along its orbit) and the target at slant range, r, according to (A10). Note that
if this distance is smooth, then a few samples need to be evaluated.

• Fit a fourth-order polynomial deriving the coefficients {a0 . . . a4} in (A19);
• Derive the polynomial coefficients {b0 . . . b3} and then {d1 . . . d3} as from (A20) and (A21);
• Evaluate the spectra Hg(ω, kx) for each wavenumber pair, (kx,Ω), by computing first

ξ from (A16), then τf = τ(ξ) from (A19), and finally R from (A18).

This last step is quite efficient, as it involves only polynomial evaluations. However, its
impact on the overall computational complexity of the overall processing is still significant.
We find out that, when performance is mandatory, some improvement in speed with
no significant degradation in quality is achieved by evaluating the polynomials on a
subsampled grid in theω domain and then linearly interpolating them for all the samples.
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So far, we have assumed the monostatic case. It is, however, straightforward to extend
the method to a bistatic system just by replacing (A11) with the actual bistatic hodograph in:

Rbis(τ; r) = |ST(τ)− P(r)|+ |SR(τ)− P(r)|, (A22)

where ST and SR are the positions of the transmitter and the receiver. To evaluate the
suitability of the 4th-order polynomial approximation, we have computed a set of bistatic
hodographs by assuming the curved orbit described in Table 2, spanning the range of
about 20 km and synthetic aperture for about 1.6 s. The hodographs and their error with
respect to the polynomial interpolation have been plotted in b The error is a tiny fraction of
the wavelength.
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