Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = disk-shaped compact tension

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5913 KiB  
Article
Effects of Moisture Infiltration on Interfacial Characteristics of Fiber Asphalt Mastic-Aggregate and the Cracking Resistance of Mixture
by Keke Lou, Silin Jia, Peng Xiao, Haochen Wu and Yuhao Wu
Materials 2025, 18(1), 53; https://doi.org/10.3390/ma18010053 - 26 Dec 2024
Cited by 1 | Viewed by 764
Abstract
The interfacial properties of fiber asphalt aggregate and the cracking resistance of asphalt mixture are directly affected by moisture infiltration. In order to investigate the correlation between interfacial properties and immersion stability of asphalt mixture, three different types of fiber, including basalt fiber [...] Read more.
The interfacial properties of fiber asphalt aggregate and the cracking resistance of asphalt mixture are directly affected by moisture infiltration. In order to investigate the correlation between interfacial properties and immersion stability of asphalt mixture, three different types of fiber, including basalt fiber (BF), glass fiber (GF), and polyester fiber (PF); five types of fiber contents (0.1% to 0.5% by mass of the mixtures); and two types of aggregates (basalt and limestone) were selected. Experimental methods such as the Bond Strength Test (BBS), Disk-Shaped Compact Tension test (DCT), and interfacial image processing were used in order to assess the strength of interfacial interaction and resistance to cracking under both dry and wet conditions. The results showed that the addition of fibers could enhance fiber asphalt mastic-aggregate interfacial strength; under the influence of moisture infiltration, the interfacial strength showed a significant downward trend. In the process of fiber content increasing from 0.1% to 0.5%, the peak load and fracture energy of fiber asphalt mixtures were first increased and then decreased. The interface between asphalt mastic and aggregate is easier to spalling after being subjected to moisture infiltration, resulting in a decrease in cracking resistance. Compared with the dry environment, after moisture infiltration, the correlation index between interfacial strength and fracture energy is much higher than other influencing factors. The interfacial strength is still an important factor affecting the fracture energy. These findings provide valuable insights for the design and application of more durable asphalt pavement. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

23 pages, 7929 KiB  
Article
Emphasis of Cyclic Loading on the Fracture Mechanism and Residual Fracture Toughness of High-Performance Concrete Considering the Morphological Properties of Aggregate
by Gauravdatt Basutkar, Thorsten Leusmann and Dirk Lowke
Constr. Mater. 2024, 4(1), 292-314; https://doi.org/10.3390/constrmater4010016 - 21 Mar 2024
Viewed by 2342
Abstract
This research investigates the fatigue behaviour and fracture mechanics of high-performance concrete (HPC), including various compositions such as HPC with basalt aggregates (HPC-B), HPC with gravel (HPC-G), and high-strength coarse mortar (CM) under static and cyclic tensile loading within the special priority program [...] Read more.
This research investigates the fatigue behaviour and fracture mechanics of high-performance concrete (HPC), including various compositions such as HPC with basalt aggregates (HPC-B), HPC with gravel (HPC-G), and high-strength coarse mortar (CM) under static and cyclic tensile loading within the special priority program SPP 2020. The study aims to integrate fracture mechanics into structural analysis to enhance design guidelines for slender cross-sections and safety-related high-performance structural components. The experimental investigations reveal HPC-B’s remarkable superiority, displaying its higher compressive strength, modulus of elasticity, and tensile strength compared to HPC-G and CM. A modified disk-shaped compact tension (MDCT) based on ASTM standards, aided by digital image correlation (DIC) unveils fracture behaviour, emphasizing fracture energy as a crucial parameter. HPC-B exhibits improved crack resistance and notch sensitivity reduction attributed to crushed basalt aggregates and an enhanced interfacial transition zone (ITZ). The research scrutinizes factors like material characterization, aggregate morphology, stress levels, and the displacement rate on crack formation. High-cycle fatigue tests show HPC-B’s superior performance, and the post-fatigue analysis reveals enhanced residual fracture toughness attributed to nano-level structural changes, stress redistribution and aggregate-matrix interaction. A 3D image analysis via Computed Tomography (CT) scans captures mesostructural crack propagation and provide quantitative insights. This research marks a significant shift from conventional aggregate-focused approaches and introduces a novel approach by integrating excess paste theory and mesoscale analysis, highlighting the critical role of aggregate choice in material characterization and mesoscale design in enhancing the structural efficiency of HPC. Furthermore, the study advances the understanding of HPC fatigue behaviour, emphasizing the interplay of aggregate types and morphologies and their dynamic response to cyclic loading, offering valuable insights for optimizing design guidelines and fostering innovation in structural engineering. Full article
Show Figures

Figure 1

14 pages, 5805 KiB  
Article
Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary M-E Design Analysis
by Dongzhao Jin, Dongdong Ge, Xiaodong Zhou and Zhanping You
Buildings 2022, 12(2), 160; https://doi.org/10.3390/buildings12020160 - 2 Feb 2022
Cited by 28 | Viewed by 4130
Abstract
Scrap tire rubber and nylon fiber are waste materials that could potentially be recycled and used to improve the mechanical properties of asphalt pavement. The objective of this research was to investigate the properties of scrap tire rubber and nylon fiber (R-F) modified [...] Read more.
Scrap tire rubber and nylon fiber are waste materials that could potentially be recycled and used to improve the mechanical properties of asphalt pavement. The objective of this research was to investigate the properties of scrap tire rubber and nylon fiber (R-F) modified warm mix asphalt mixture (WMA). The high-temperature performance was estimated by the Hamburg wheel-tracking testing (HWTT) device. The low-temperature cracking performance was evaluated by the disk-shaped compact tension (DCT) test and the indirect tensile strength (IDT) test. The stress and strain relationship was assessed by the dynamic modulus test at various temperatures and frequencies. The extracted asphalt binder was evaluated by the dynamic shear rheometer (DSR). Pavement distresses were predicted by pavement mechanistic-empirical (M-E) analysis. The test results showed that: (1) The R-F modified WMA had better high-temperature rutting performance. The dynamic modulus of conventional hot mix asphalt mixture (HMA) was 21.8%~103% lower than R-F modified WMA at high temperatures. The wheel passes and stripping point of R-F modified WMA were 2.17 and 5.8 times higher than those of conventional HMA, respectively. Moreover, the R-F modified warm mix asphalt had a higher rutting index than the original asphalt. (2) R-F modified WMA had better cracking resistance at a low temperature. The failure energy of the R-F modified WMA was 24.3% higher than the conventional HMA, and the fracture energy of the R-F modified WMA was 7.7% higher than the conventional HMA. (3) The pavement distress prediction results showed the same trend compared with the laboratory testing performance in that the R-F modified WMA helped to improve the IRI, AC cracking, and rutting performance compared with the conventional HMA. In summary, R-F modified WMA can be applied in pavement construction. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

20 pages, 5961 KiB  
Article
Cold In-Place Recycling Asphalt Mixtures: Laboratory Performance and Preliminary M-E Design Analysis
by Dongzhao Jin, Dongdong Ge, Siyu Chen, Tiankai Che, Hongfu Liu, Lance Malburg and Zhanping You
Materials 2021, 14(8), 2036; https://doi.org/10.3390/ma14082036 - 18 Apr 2021
Cited by 30 | Viewed by 3629
Abstract
Cold in-place recycling (CIR) asphalt mixtures are an attractive eco-friendly method for rehabilitating asphalt pavement. However, the on-site CIR asphalt mixture generally has a high air void because of the moisture content during construction, and the moisture susceptibility is vital for estimating the [...] Read more.
Cold in-place recycling (CIR) asphalt mixtures are an attractive eco-friendly method for rehabilitating asphalt pavement. However, the on-site CIR asphalt mixture generally has a high air void because of the moisture content during construction, and the moisture susceptibility is vital for estimating the road service life. Therefore, the main purpose of this research is to characterize the effect of moisture on the high-temperature and low-temperature performance of a CIR asphalt mixture to predict CIR pavement distress based on a mechanistic–empirical (M-E) pavement design. Moisture conditioning was simulated by the moisture-induced stress tester (MIST). The moisture susceptibility performance of the CIR asphalt mixture (pre-mist and post-mist) was estimated by a dynamic modulus test and a disk-shaped compact tension (DCT) test. In addition, the standard solvent extraction test was used to obtain the reclaimed asphalt pavement (RAP) and CIR asphalt. Asphalt binder performance, including higher temperature and medium temperature performance, was evaluated by dynamic shear rheometer (DSR) equipment and low-temperature properties were estimated by the asphalt binder cracking device (ABCD). Then the predicted pavement distresses were estimated based on the pavement M-E design method. The experimental results revealed that (1) DCT and dynamic modulus tests are sensitive to moisture conditioning. The dynamic modulus decreased by 13% to 43% at various temperatures and frequencies, and the low-temperature cracking energy decreased by 20%. (2) RAP asphalt incorporated with asphalt emulsion decreased the high-temperature rutting resistance but improved the low-temperature anti-cracking and the fatigue life. The M-E design results showed that the RAP incorporated with asphalt emulsion reduced the international roughness index (IRI) and AC bottom-up fatigue predictions, while increasing the total rutting and AC rutting predictions. The moisture damage in the CIR pavement layer also did not significantly affect the predicted distress with low traffic volume. In summary, the implementation of CIR technology in the project improved low-temperature cracking and fatigue performance in the asphalt pavement. Meanwhile, the moisture damage of the CIR asphalt mixture accelerated high-temperature rutting and low-temperature cracking, but it may be acceptable when used for low-volume roads. Full article
Show Figures

Figure 1

18 pages, 3734 KiB  
Article
Exploring the Possibility of Using Ionic Copolymer Poly (Ethylene-co-Methacrylic) Acid as Modifier and Self-Healing Agent in Asphalt Binder and Mixture
by Yuefeng Zhu, Reyhaneh Rahbar-Rastegar, Yanwei Li, Yaning Qiao and Chundi Si
Appl. Sci. 2020, 10(2), 426; https://doi.org/10.3390/app10020426 - 7 Jan 2020
Cited by 8 | Viewed by 3026
Abstract
It is well-accepted that the ionic copolymer poly (ethylene-co-methacrylic) acid (also named EMAA) is one type of self-healing material. This particular capability has great potential for extending the service life of infrastructures. In order to improve the rheological, mechanical, and self-healing [...] Read more.
It is well-accepted that the ionic copolymer poly (ethylene-co-methacrylic) acid (also named EMAA) is one type of self-healing material. This particular capability has great potential for extending the service life of infrastructures. In order to improve the rheological, mechanical, and self-healing properties of asphalt binder and asphalt mixtures, EMAA and styrene butadiene rubber (SBR) were selected as the additives. In this study, the effects of EMAA and SBR on the performance of bitumen and asphalt mixtures were examined and characterized using various parameters including rheological indices, Glover–Rowe parameter, ductility self-healing rate, fluorescence microscopy, and scanning electron microscope (SEM) test on binders, and different testing methods such as complex modulus, thermal stress-restrained specimen test (TSRST), disk-shaped compact tension (DCT), and fatigue–healing–fatigue test on the mixtures. The results showed that EMAA can significantly improve the stiffness and self-healing capacity of virgin and SBR modified binders and mixtures. Moreover, the cracking resistance of EMAA/SBR compound modified binder and mixture showed a significant improvement. However, EMAA is not recommended to be added as a modifier to virgin binders and mixtures due to its poor cracking resistance. Some novel tests and parameters mentioned in this paper are recommended for characterizing binders and mixtures in the future. Full article
(This article belongs to the Special Issue Asphalt Materials)
Show Figures

Figure 1

19 pages, 8089 KiB  
Article
Estimates of Tillage and Rainfall Effects on Unsaturated Hydraulic Conductivity in a Small Central European Agricultural Catchment
by David Zumr, Jakub Jeřábek, Vladimír Klípa, Michal Dohnal and Michal Sněhota
Water 2019, 11(4), 740; https://doi.org/10.3390/w11040740 - 10 Apr 2019
Cited by 20 | Viewed by 4405
Abstract
In arable land, topsoil is exposed to structural changes during each growing season due to agricultural management, climate, the kinetic energy of rainfall, crop and root growth. The shape, size, and spatial distributions of soil aggregates are considerably altered during the season and [...] Read more.
In arable land, topsoil is exposed to structural changes during each growing season due to agricultural management, climate, the kinetic energy of rainfall, crop and root growth. The shape, size, and spatial distributions of soil aggregates are considerably altered during the season and thus affect water infiltration and the soil moisture regime. Agricultural topsoils are prone to soil compaction and surface sealing which result in soil structure degradation and disconnection of preferential pathways. To study topsoil infiltration properties over time, near-saturated hydraulic conductivity of topsoil was repeatedly assessed in a catchment in central Bohemia (Czech Republic) during three consecutive growing seasons, using a recently developed automated tension minidisk infiltrometer (MultiDisk). Seasonal variability of soil bulk density and saturated water content was observed as topsoil consolidated between seedbed preparations. Topsoil unsaturated hydraulic conductivity was lower in spring and increased in the summer months during two seasons, and the opposite trend was observed during one season. Temporal unsaturated hydraulic conductivity variability was higher than spatial variability. Cumulative kinetic energy of rainfall, causing a seasonal decrease in soil macroporosity and unsaturated hydraulic conductivity, was not a statistically significant predictor. Full article
(This article belongs to the Special Issue Soil Hydrology in Agriculture)
Show Figures

Graphical abstract

20 pages, 5427 KiB  
Article
Performance Analysis of Asphalt Mixtures Modified with Ground Tire Rubber Modifiers and Recycled Materials
by Punyaslok Rath, Joshua E. Love, William G. Buttlar and Henrique Reis
Sustainability 2019, 11(6), 1792; https://doi.org/10.3390/su11061792 - 25 Mar 2019
Cited by 41 | Viewed by 5851
Abstract
The usage of Ground Tire Rubber (GTR) in asphalt pavements has gained renewed interest due to its potential sustainability, economic, and performance benefits. This study focuses on asphalt mixtures designed with three different rubber modifier products including (1) a terminal-blend GTR, (2) a [...] Read more.
The usage of Ground Tire Rubber (GTR) in asphalt pavements has gained renewed interest due to its potential sustainability, economic, and performance benefits. This study focuses on asphalt mixtures designed with three different rubber modifier products including (1) a terminal-blend GTR, (2) a dry-process, chemically processed rubber product, and (3) a terminal-blend rubber-polymer hybrid product. The modifications were incorporated into Illinois Tollway’s approved Stone Matrix Asphalt (SMA) designs using (1) a base binder (PG 58-28), (2) a softer binder (PG 46-34), and (3) a softer binder with higher recycled content. Disk-shaped Compact Tension (DC(T)) test, Hamburg Wheel Tracking Test (HWTT) and Acoustic Emission (AE) tests were performed to characterize the mixtures. The fracture energy for most mixtures met the stringent criteria of 690 J/m2 and the rut depths measured were less than 6 mm at 20,000 wheel passes. A Hamburg-DC(T) plot suggests that higher amounts of RAP/RAS (RAP: Reclaimed Asphalt Pavement; RAS: Reusable Asphalt Shingles) can be successfully used if a suitably soft base binder is employed. Full article
(This article belongs to the Special Issue Sustainable Infrastructure Materials and Systems)
Show Figures

Figure 1

Back to TopTop