Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = diode desaturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3430 KB  
Article
Red Light Control of β-Carotene Isomerisation to 9-cis β-Carotene and Carotenoid Accumulation in Dunaliella salina
by Yanan Xu and Patricia J. Harvey
Antioxidants 2019, 8(5), 148; https://doi.org/10.3390/antiox8050148 - 27 May 2019
Cited by 35 | Viewed by 6085
Abstract
Dunaliella salina is a rich source of 9-cis β-carotene, which has been identified as an important biomolecule in the treatment of retinal dystrophies and other diseases. We previously showed that chlorophyll absorption of red light photons in D. salina is coupled with oxygen [...] Read more.
Dunaliella salina is a rich source of 9-cis β-carotene, which has been identified as an important biomolecule in the treatment of retinal dystrophies and other diseases. We previously showed that chlorophyll absorption of red light photons in D. salina is coupled with oxygen reduction and phytoene desaturation, and that it increases the pool size of β-carotene. Here, we show for the first time that growth under red light also controls the conversion of extant all-trans β-carotene to 9-cis β-carotene by β-carotene isomerases. Cells illuminated with red light from a light emitting diode (LED) during cultivation contained a higher 9-cis β-carotene content compared to cells illuminated with white or blue LED light. The 9-cis/all-trans β-carotene ratio in red light treated cultures reached >2.5 within 48 h, and was independent of light intensity. Illumination using red light filters that eliminated blue wavelength light also increased the 9-cis/all-trans β-carotene ratio. With norflurazon, a phytoene desaturase inhibitor which blocked downstream biosynthesis of β-carotene, extant all-trans β-carotene was converted to 9-cis β-carotene during growth with red light and the 9-cis/all-trans β-carotene ratio was ~2. With blue light under the same conditions, 9-cis β-carotene was likely destroyed at a greater rate than all-trans β-carotene (9-cis/all-trans ratio 0.5). Red light perception by the red light photoreceptor, phytochrome, may increase the pool size of anti-oxidant, specifically 9-cis β-carotene, both by upregulating phytoene synthase to increase the rate of biosynthesis of β-carotene and to reduce the rate of formation of reactive oxygen species (ROS), and by upregulating β-carotene isomerases to convert extant all-trans β-carotene to 9-cis β-carotene. Full article
(This article belongs to the Special Issue Marine Algal Antioxidants)
Show Figures

Figure 1

14 pages, 7231 KB  
Article
Carotenoid Production by Dunaliella salina under Red Light
by Yanan Xu and Patricia J. Harvey
Antioxidants 2019, 8(5), 123; https://doi.org/10.3390/antiox8050123 - 7 May 2019
Cited by 99 | Viewed by 9776
Abstract
The halotolerant photoautotrophic marine microalga Dunaliella salina is one of the richest sources of natural carotenoids. Here we investigated the effects of high intensity blue, red and white light from light emitting diodes (LED) on the production of carotenoids by strains of D. [...] Read more.
The halotolerant photoautotrophic marine microalga Dunaliella salina is one of the richest sources of natural carotenoids. Here we investigated the effects of high intensity blue, red and white light from light emitting diodes (LED) on the production of carotenoids by strains of D. salina under nutrient sufficiency and strict temperature control favouring growth. Growth in high intensity red light was associated with carotenoid accumulation and a high rate of oxygen uptake. On transfer to blue light, a massive drop in carotenoid content was recorded along with very high rates of photo-oxidation. In high intensity blue light, growth was maintained at the same rate as in red or white light, but without carotenoid accumulation; transfer to red light stimulated a small increase in carotenoid content. The data support chlorophyll absorption of red light photons to reduce plastoquinone in photosystem II, coupled to phytoene desaturation by plastoquinol:oxygen oxidoreductase, with oxygen as electron acceptor. Partitioning of electrons between photosynthesis and carotenoid biosynthesis would depend on both red photon flux intensity and phytoene synthase upregulation by the red light photoreceptor, phytochrome. Red light control of carotenoid biosynthesis and accumulation reduces the rate of formation of reactive oxygen species (ROS) as well as increases the pool size of anti-oxidant. Full article
(This article belongs to the Special Issue Marine Algal Antioxidants)
Show Figures

Figure 1

17 pages, 5518 KB  
Article
Research on Single-Phase PWM Converter with Reverse Conducting IGBT Based on Loss Threshold Desaturation Control
by Xianjin Huang, Dengwei Chang, Chao Ling and Trillion Q. Zheng
Energies 2017, 10(11), 1845; https://doi.org/10.3390/en10111845 - 12 Nov 2017
Cited by 6 | Viewed by 8954
Abstract
In the application of vehicle power supply and distributed power generation, there are strict requirements for the pulse width modulation (PWM) converter regarding power density and reliability. When compared with the conventional insulated gate bipolar transistor (IGBT) module, the Reverse Conducting-Insulated Gate Bipolar [...] Read more.
In the application of vehicle power supply and distributed power generation, there are strict requirements for the pulse width modulation (PWM) converter regarding power density and reliability. When compared with the conventional insulated gate bipolar transistor (IGBT) module, the Reverse Conducting-Insulated Gate Bipolar Transistor (RC-IGBT) with the same package has a lower thermal resistance and higher current tolerance. By applying the gate desaturation control, the reverse recovery loss of the RC-IGBT diode may be reduced. In this paper, a loss threshold desaturation control method is studied to improve the output characteristics of the single-phase PWM converter with a low switching frequency. The gate desaturation control characteristics of the RC-IGBT’s diode are studied. A proper current limit is set to avoid the ineffective infliction of the desaturation pulse, while the bridge arm current crosses zero. The expectation of optimized loss decrease is obtained, and the better performance for the RC-IGBTs of the single-phase PWM converter is achieved through the optimized desaturation pulse distribution. Finally, the improved predictive current control algorithm that is applied to the PWM converter with RC-IGBTs is simulated, and is operated and tested on the scaled reduced power platform. The results prove that the gate desaturation control with the improved predictive current algorithm may effectively improve the RC-IGBT’s characteristics, and realize the stable output of the PWM converter. Full article
Show Figures

Figure 1

17 pages, 7272 KB  
Article
Loss Characteristics of 6.5 kV RC-IGBT Applied to a Traction Converter
by Xianjin Huang, Chao Ling, Dengwei Chang, Xiaojie You and Trillion Q. Zheng
Energies 2017, 10(7), 891; https://doi.org/10.3390/en10070891 - 1 Jul 2017
Cited by 4 | Viewed by 7915
Abstract
6.5 kV level IGBT (Insulated Gate Bipolar Transistor) modules are widely applied in megawatt locomotive (MCUs) traction converters, to achieve an upper 3.5 kV DC link, which is beneficial for decreasing power losses and increasing the power density. Reverse Conducting IGBT (RC-IGBT) constructs [...] Read more.
6.5 kV level IGBT (Insulated Gate Bipolar Transistor) modules are widely applied in megawatt locomotive (MCUs) traction converters, to achieve an upper 3.5 kV DC link, which is beneficial for decreasing power losses and increasing the power density. Reverse Conducting IGBT (RC-IGBT) constructs the conventional IGBT function and freewheel diode function in a single chip, which has a greater flow ability in the same package volume. In the same cooling conditions, RC-IGBT allows for a higher operating temperature. In this paper, a mathematic model is developed, referring to the datasheets and measurement data, to study the 6.5 kV/1000 A RC-IGBT switching features. The relationship among the gate desaturated pulse, conducting losses, and recovery losses is discussed. Simulations and tests were carried out to consider the influence of total losses on the different amplitudes and durations of the desaturated pulse. The RC-IGBT traction converter system with gate pulse desaturated control is built, and the simulation and measurements show that the total losses of RC-IGBT with desaturated control decreased comparing to the RC-IGBT without desaturated control or conventional IGBT. Finally, a proportional small power platform is developed, and the test results prove the correction of the theory analysis. Full article
Show Figures

Figure 1

Back to TopTop