Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = diluent gases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3981 KiB  
Article
Initial Characterization of Low Molecular Weight Hydrocarbons in an Oil Sands Pit Lake
by Han Bao, Chenlu Wang, Bridget S. H. Steven and Greg F. Slater
Earth 2025, 6(2), 44; https://doi.org/10.3390/earth6020044 - 20 May 2025
Viewed by 846
Abstract
Water-capped tailings technology (WCTT) is a strategy where oil sand tailings are sequestered within a mined-out pit and overlayed with a layer of water in order to sequester tailings with the aim that the resulting pit lake will support aquatic plants and organisms [...] Read more.
Water-capped tailings technology (WCTT) is a strategy where oil sand tailings are sequestered within a mined-out pit and overlayed with a layer of water in order to sequester tailings with the aim that the resulting pit lake will support aquatic plants and organisms over time. The Base Mine Lake Demonstration (BML) is the first full-scale demonstration of a pit lake in the Athabasca Oil Sands Region (AOSR). In the BML, the release of methane from the fluid tailings influences several key processes, including the flux of greenhouse gases, microbial oxygen consumption in the water column, and ebullition-facilitated transport of organics from the fluid tailings to the lake surface. It is hypothesized that the residual low molecular weight hydrocarbons (LMWHCs) derived from diluent naphtha used during bitumen extraction processes are the carbon sources fueling ongoing microbial methanogenesis within the BML. The aims of this study were to identify the LMWHCs in the BML fluid tailings, to elucidate their sources, and to assess the extent of biogeochemical cycling affecting them. A headspace GC/MS analysis identified 84, 44, and 56 LMWHCs (C4–C10) present in naphtha, unprocessed bitumen ore, and fluid tailings, respectively. Equilibrium mass balance assessment indicated that the vast majority (>95%) of LMWHCs were absorbed within residual bitumen rather than dissolving into tailings pore water. Such absorbed compounds would not be readily available to in situ microbial communities but would represent a long-term source for methanogenesis. Chromatographic analysis revealed that most biodegradable compounds (n-alkanes and BTEX) were present in the naphtha but not in fluid tailings or bitumen ore, implying they are sourced from the naphtha and have been preferentially biodegraded after being deposited. Among the LMWHCs observed in bitumen ore, naphtha, and fluid tailings, C2-cyclohexanes had the highest relative abundance in tailings samples, implying their relatively high recalcitrance to in situ biodegradation. Full article
Show Figures

Graphical abstract

16 pages, 6058 KiB  
Article
ECTFE Membrane Fabrication Using Green Binary Diluents TEGDA/TOTM and Its Performance in Membrane Condenser
by Songhong Yu, Yu Huang, Lixun Zhang, Qian Wang, Zhaohui Wang, Zhaoliang Cui and Enrico Drioli
Membranes 2022, 12(8), 757; https://doi.org/10.3390/membranes12080757 - 31 Jul 2022
Cited by 2 | Viewed by 2603
Abstract
Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the green binary [...] Read more.
Poly(ethylene-chlorotrifluoroethylene) (ECTFE) membrane is a hydrophobic membrane material that can be used to recover water from high-humidity gases in the membrane condenser (MC) process. In this study, ECTFE membranes were prepared by the thermally induced phase separation (TIPS) method using the green binary diluents triglyceride diacetate (TEGDA) and trioctyl trimellitate (TOTM). Thermodynamic phase diagrams of the ECTFE/TEGDA: TOTM system were made. The effects of the diluent composition and cooling rate on the structure and properties of the ECTFE membranes were investigated by characterizing the SEM, contact angle, mechanical properties, pore size and porosity. The results showed that ECTFE membranes with cellular structure were successfully prepared and exhibit good mechanical properties. Moreover, increasing the TOTM content in the binary diluents and decreasing the cooling rate could effectively improve the mean pore size of the ECTFE membranes, but the increase in TOTM content reduced the mechanical properties. During the MC process, the water recovery performance of ECTFE membranes increased with the increase in the mean pore size of the membranes, and the condensation flow and water recovery of membrane prepared at 20% TOTM were 1.71 kg·m−2·h−1 and 54.84%, respectively, which were better than the performance of commercial hydrophobic PVDF membranes in the MC. These results indicated that there is good potential for the application of ECTFE membranes during the MC process. Full article
Show Figures

Graphical abstract

18 pages, 5860 KiB  
Article
The Effect of Inert Fuel Compounds on Flame Characteristics
by Igor Hudák, Pavel Skryja, Jiří Bojanovský, Zdeněk Jegla and Martin Krňávek
Energies 2022, 15(1), 262; https://doi.org/10.3390/en15010262 - 31 Dec 2021
Cited by 7 | Viewed by 3619
Abstract
To describe the effects of inert compounds in gaseous fuel, experiments on three different process burners (staged fuel burner, staged air burner, and low-calorific burner) were carried out. The tested burners are commercially available, but they were specially designed for experimental usage. Tests [...] Read more.
To describe the effects of inert compounds in gaseous fuel, experiments on three different process burners (staged fuel burner, staged air burner, and low-calorific burner) were carried out. The tested burners are commercially available, but they were specially designed for experimental usage. Tests were carried out in the semi-industrial burner testing facility to investigate the influence of inert gases on the flame characteristics, emissions, and heat flux to the combustion chamber wall. Natural gas was used as a reference fuel, and, during all tests, thermal power of 500 kW was maintained. To simulate the combustion of alternative fuels with lower LHV, N2 and CO2 were used as diluents. The inert gas in the hydrocarbon fuel at certain conditions can lower NOx emissions (up to 80%) and increase heat flux (up to 5%). Once incombustible compounds are present in the fuel, the higher amount of fuel flowing through nozzles affects the flow in the combustion chamber by increasing the Reynolds number. This can change the flame pattern and temperature field, and it can be both positive and negative, depending on actual conditions. Full article
Show Figures

Figure 1

18 pages, 976 KiB  
Review
A Deep Look into the Microbiology and Chemistry of Froth Treatment Tailings: A Review
by Angeline Van Dongen, Abdul Samad, Nicole E. Heshka, Kara Rathie, Christine Martineau, Guillaume Bruant and Dani Degenhardt
Microorganisms 2021, 9(5), 1091; https://doi.org/10.3390/microorganisms9051091 - 19 May 2021
Cited by 7 | Viewed by 4657
Abstract
In Alberta’s Athabasca oil sands region (AOSR), over 1.25 billion m3 of tailings waste from the bitumen extraction process are stored in tailings ponds. Fugitive emissions associated with residual hydrocarbons in tailings ponds pose an environmental concern and include greenhouse gases (GHGs), [...] Read more.
In Alberta’s Athabasca oil sands region (AOSR), over 1.25 billion m3 of tailings waste from the bitumen extraction process are stored in tailings ponds. Fugitive emissions associated with residual hydrocarbons in tailings ponds pose an environmental concern and include greenhouse gases (GHGs), reduced sulphur compounds (RSCs), and volatile organic compounds (VOCs). Froth treatment tailings (FTT) are a specific type of tailings waste stream from the bitumen froth treatment process that contains bioavailable diluent: either naphtha or paraffins. Tailings ponds that receive FTT are associated with the highest levels of biogenic gas production, as diverse microbial communities biodegrade the residual diluent. In this review, current literature regarding the composition, chemical analysis, and microbial degradation of FTT and its constituents is presented in order to provide a more complete understanding of the complex chemistry and biological processes related to fugitive emissions from tailings ponds receiving FTT. Characterizing the composition and biodegradation of FTT is important from an environmental perspective to better predict emissions from tailings ponds and guide tailings pond management decisions. Full article
(This article belongs to the Special Issue The Microbiology of Oil Sands Tailings)
Show Figures

Figure 1

11 pages, 4849 KiB  
Article
Investigation of Dilution Effect on CH4/Air Premixed Turbulent Flame Using OH and CH2O Planar Laser-Induced Fluorescence
by Li Yang, Wubin Weng, Yanqun Zhu, Yong He, Zhihua Wang and Zhongshan Li
Energies 2020, 13(2), 325; https://doi.org/10.3390/en13020325 - 9 Jan 2020
Cited by 3 | Viewed by 3458
Abstract
Diluting the combustion mixtures is one of the advanced approaches to reduce the NOx emission of methane/air premixed turbulent flame, especially with high diluents to create a distributed reaction zone and mild combustion, which can lower the temperature of reaction zone and [...] Read more.
Diluting the combustion mixtures is one of the advanced approaches to reduce the NOx emission of methane/air premixed turbulent flame, especially with high diluents to create a distributed reaction zone and mild combustion, which can lower the temperature of reaction zone and reduce the formation of NOx. The effect of N2/CO2 dilution on the combustion characteristics of methane/air premixed turbulent flame with different dilution ratio and different exit Reynolds number was conducted by OH-PLIF and CH2O-PLIF. Results show that the increase of dilution ratio can sharply reduce the concentration of OH and CH2O, and postpone the burning of fuel. Compared with the ultra-lean combustion, the dilution weakens the combustion more obviously. For different dilution gases, the concentration of OH in the combustion zone varies greatly, while the concentration of CH2O in the unburned zone is less affected by different dilution gas. The CO2 dilution has a more significant effect on OH concentration than N2 with the given dilution ratio, but a similar effect on the concentration of CH2O in the preheat zone of flame. However, dilution does not have much influence on the flame structure with the given turbulent intensity. Full article
(This article belongs to the Special Issue Engineering Fluid Dynamics 2019-2020)
Show Figures

Graphical abstract

18 pages, 4939 KiB  
Article
Experimental Investigation of Diluents Components on Performance and Emissions of a High Compression Ratio Methanol SI Engine
by You Zhou, Wei Hong, Ye Yang, Xiaoping Li, Fangxi Xie and Yan Su
Energies 2019, 12(17), 3366; https://doi.org/10.3390/en12173366 - 1 Sep 2019
Cited by 5 | Viewed by 2917
Abstract
Increasing compression ratio and using lean burn are two effective techniques for improving engine performance. Methanol has a wide range of sources and is a kind of suitable fuel for a high-compression ratio spark-ignition lean burn engine. Lean burn mainly has a dilution [...] Read more.
Increasing compression ratio and using lean burn are two effective techniques for improving engine performance. Methanol has a wide range of sources and is a kind of suitable fuel for a high-compression ratio spark-ignition lean burn engine. Lean burn mainly has a dilution effect, thermal effect and chemical effect. To clarify the influences of different effects and provide guidance for improving composition of dilution gases and applications of this technology, this paper chose Ar, N2 and CO2 as diluents. A spark-ignition methanol engine modified from a diesel engine with a compression ratio of 17.5 was used for the experiments. The results obtained by using methanol spark ignition combustion indicated that at engine speed of 1400 rpm and 25% load, NOx dropped by up to 77.5%, 100% and 100% by Ar, CO2 and N2. Gases with higher specific heat ratio and lower heat capacity represented by Ar exhibited the least adverse effect on combustion and showed a downward break-specific fuel consumption (BSFC) trend. Gas with high specific heat capacity represented by CO2 can decrease NOx and total hydro carbons (THC) emissions at the same time, but the BSFC of CO2 showed the worst trend, followed by N2. Gas affecting the combustion process like CO2 had chemical effect. Full article
Show Figures

Figure 1

11 pages, 3645 KiB  
Article
DBD Plasma Assisted CO2 Decomposition: Influence of Diluent Gases
by Debjyoti Ray, Rajdeep Saha and Subrahmanyam Ch.
Catalysts 2017, 7(9), 244; https://doi.org/10.3390/catal7090244 - 23 Aug 2017
Cited by 69 | Viewed by 10170
Abstract
Carbon dioxide (CO2) partial reduction to carbon monoxide (CO) and oxygen has been conducted in a dielectric barrier discharge reactor (DBD) operating a packed bed configuration and the results are compared with that of no packing condition. The effect of diluent [...] Read more.
Carbon dioxide (CO2) partial reduction to carbon monoxide (CO) and oxygen has been conducted in a dielectric barrier discharge reactor (DBD) operating a packed bed configuration and the results are compared with that of no packing condition. The effect of diluent gas is studied to understand the influence on dielectric strength of the plasma gas on CO2 splitting, with the objective of obtaining the best CO selectivity and high energy efficiency. Typical results indicated that among N2, He and Ar gases, Ar showed the best decomposition efficiency. Glass beads packing has a strong influence on the performance, probably due to the enhanced field strength due to dielectric nature of the packed material. In a similar manner, Ar mole ratio in the gas mixture also played a significant role, where the maximum CO2 conversion of 19.5% was obtained with packed DBD at CO2:Ar ratio 1:2. The best CO yield (16.8%) was also obtained under the same conditions. The highest energy efficiency was found to be 0.945 mmol/kJ. The activated species formed inside the CO2 plasma were identified by optical emission spectroscopy. Full article
Show Figures

Graphical abstract

Back to TopTop