Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = dice similarity coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4256 KiB  
Article
Automated Segmentation and Morphometric Analysis of Thioflavin-S-Stained Amyloid Deposits in Alzheimer’s Disease Brains and Age-Matched Controls Using Weakly Supervised Deep Learning
by Gábor Barczánfalvi, Tibor Nyári, József Tolnai, László Tiszlavicz, Balázs Gulyás and Karoly Gulya
Int. J. Mol. Sci. 2025, 26(15), 7134; https://doi.org/10.3390/ijms26157134 - 24 Jul 2025
Abstract
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly [...] Read more.
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly supervised learning offers a promising alternative by leveraging coarse or indirect labels to reduce the annotation burden. We evaluated a weakly supervised approach to segment and analyze thioflavin-S-positive parenchymal amyloid pathology in AD and age-matched brains. Our pipeline integrates three key components, each designed to operate under weak supervision. First, robust preprocessing (including retrospective multi-image illumination correction and gradient-based background estimation) was applied to enhance image fidelity and support training, as models rely more on image features. Second, class activation maps (CAMs), generated by a compact deep classifier SqueezeNet, were used to identify, and coarsely localize amyloid-rich parenchymal regions from patch-wise image labels, serving as spatial priors for subsequent refinement without requiring dense pixel-level annotations. Third, a patch-based convolutional neural network, U-Net, was trained on synthetic data generated from micrographs based on CAM-derived pseudo-labels via an extensive object-level augmentation strategy, enabling refined whole-image semantic segmentation and generalization across diverse spatial configurations. To ensure robustness and unbiased evaluation, we assessed the segmentation performance of the entire framework using patient-wise group k-fold cross-validation, explicitly modeling generalization across unseen individuals, critical in clinical scenarios. Despite relying on weak labels, the integrated pipeline achieved strong segmentation performance with an average Dice similarity coefficient (≈0.763) and Jaccard index (≈0.639), widely accepted metrics for assessing segmentation quality in medical image analysis. The resulting segmentations were also visually coherent, demonstrating that weakly supervised segmentation is a viable alternative in histopathology, where acquiring dense annotations is prohibitively labor-intensive and time-consuming. Subsequent morphometric analyses on automatically segmented Aβ deposits revealed size-, structural complexity-, and global geometry-related differences across brain regions and cognitive status. These findings confirm that deposit architecture exhibits region-specific patterns and reflects underlying neurodegenerative processes, thereby highlighting the biological relevance and practical applicability of the proposed image-processing pipeline for morphometric analysis. Full article
Show Figures

Figure 1

27 pages, 3888 KiB  
Article
Deep Learning-Based Algorithm for the Classification of Left Ventricle Segments by Hypertrophy Severity
by Wafa Baccouch, Bilel Hasnaoui, Narjes Benameur, Abderrazak Jemai, Dhaker Lahidheb and Salam Labidi
J. Imaging 2025, 11(7), 244; https://doi.org/10.3390/jimaging11070244 - 20 Jul 2025
Viewed by 238
Abstract
In clinical practice, left ventricle hypertrophy (LVH) continues to pose a considerable challenge, highlighting the need for more reliable diagnostic approaches. This study aims to propose an automated framework for the quantification of LVH extent and the classification of myocardial segments according to [...] Read more.
In clinical practice, left ventricle hypertrophy (LVH) continues to pose a considerable challenge, highlighting the need for more reliable diagnostic approaches. This study aims to propose an automated framework for the quantification of LVH extent and the classification of myocardial segments according to hypertrophy severity using a deep learning-based algorithm. The proposed method was validated on 133 subjects, including both healthy individuals and patients with LVH. The process starts with automatic LV segmentation using U-Net and the segmentation of the left ventricle cavity based on the American Heart Association (AHA) standards, followed by the division of each segment into three equal sub-segments. Then, an automated quantification of regional wall thickness (RWT) was performed. Finally, a convolutional neural network (CNN) was developed to classify each myocardial sub-segment according to hypertrophy severity. The proposed approach demonstrates strong performance in contour segmentation, achieving a Dice Similarity Coefficient (DSC) of 98.47% and a Hausdorff Distance (HD) of 6.345 ± 3.5 mm. For thickness quantification, it reaches a minimal mean absolute error (MAE) of 1.01 ± 1.16. Regarding segment classification, it achieves competitive performance metrics compared to state-of-the-art methods with an accuracy of 98.19%, a precision of 98.27%, a recall of 99.13%, and an F1-score of 98.7%. The obtained results confirm the high performance of the proposed method and highlight its clinical utility in accurately assessing and classifying cardiac hypertrophy. This approach provides valuable insights that can guide clinical decision-making and improve patient management strategies. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

20 pages, 1606 KiB  
Article
Brain Tumour Segmentation Using Choquet Integrals and Coalition Game
by Makhlouf Derdour, Mohammed El Bachir Yahiaoui, Moustafa Sadek Kahil, Mohamed Gasmi and Mohamed Chahine Ghanem
Information 2025, 16(7), 615; https://doi.org/10.3390/info16070615 - 17 Jul 2025
Viewed by 187
Abstract
Artificial Intelligence (AI) and computer-aided diagnosis (CAD) have revolutionised various aspects of modern life, particularly in the medical domain. These technologies enable efficient solutions for complex challenges, such as accurately segmenting brain tumour regions, which significantly aid medical professionals in monitoring and treating [...] Read more.
Artificial Intelligence (AI) and computer-aided diagnosis (CAD) have revolutionised various aspects of modern life, particularly in the medical domain. These technologies enable efficient solutions for complex challenges, such as accurately segmenting brain tumour regions, which significantly aid medical professionals in monitoring and treating patients. This research focuses on segmenting glioma brain tumour lesions in MRI images by analysing them at the pixel level. The aim is to develop a deep learning-based approach that enables ensemble learning to achieve precise and consistent segmentation of brain tumours. While many studies have explored ensemble learning techniques in this area, most rely on aggregation functions like the Weighted Arithmetic Mean (WAM) without accounting for the interdependencies between classifier subsets. To address this limitation, the Choquet integral is employed for ensemble learning, along with a novel evaluation framework for fuzzy measures. This framework integrates coalition game theory, information theory, and Lambda fuzzy approximation. Three distinct fuzzy measure sets are computed using different weighting strategies informed by these theories. Based on these measures, three Choquet integrals are calculated for segmenting different components of brain lesions, and their outputs are subsequently combined. The BraTS-2020 online validation dataset is used to validate the proposed approach. Results demonstrate superior performance compared with several recent methods, achieving Dice Similarity Coefficients of 0.896, 0.851, and 0.792 and 95% Hausdorff distances of 5.96 mm, 6.65 mm, and 20.74 mm for the whole tumour, tumour core, and enhancing tumour core, respectively. Full article
Show Figures

Figure 1

18 pages, 1212 KiB  
Article
Assessing the Vegetation Diversity of Different Forest Ecosystems in Southern Romania Using Biodiversity Indices and Similarity Coefficients
by Florin Daniel Stamin and Sina Cosmulescu
Biology 2025, 14(7), 869; https://doi.org/10.3390/biology14070869 - 17 Jul 2025
Viewed by 243
Abstract
The present study analyzed the vegetation diversity in three forests located in southern Romania and assessed their degree of similarity. Data were collected using frame quadrat sampling and species taxonomic identification. The methodology included the calculation of ecological indices (Shannon–Wiener, equitability, maximum entropy, [...] Read more.
The present study analyzed the vegetation diversity in three forests located in southern Romania and assessed their degree of similarity. Data were collected using frame quadrat sampling and species taxonomic identification. The methodology included the calculation of ecological indices (Shannon–Wiener, equitability, maximum entropy, Menhinick, Margalef, McIntosh, Gleason, and Simpson) and statistical analysis using ANOVA and Duncan tests (p < 0.05). Similarity between forests was evaluated using the Jaccard and Dice/Sørensen coefficients. The results showed that biodiversity increases with area size, and the forest ecosystem in Vlădila exhibited the highest number of woody and herbaceous species. Although the forest ecosystem in Studinița had the greatest floristic diversity, according to the Shannon–Wiener index, it also showed higher equitability (0.911 compared to 0.673 in Vlădila) due to a more uniform species distribution. The forest ecosystem in Studinița acted as an intermediate zone between those in Grădinile and Vlădila. Variations in diversity among the three areas reflect ecological differences influenced by location-specific factors such as soil type, climatic conditions, and human interventions. This suggests that ecological conditions and the physical characteristics of forests significantly impact the number and types of species that can coexist within an ecosystem. Full article
(This article belongs to the Special Issue Young Researchers in Conservation Biology and Biodiversity)
Show Figures

Figure 1

18 pages, 1995 KiB  
Article
A U-Shaped Architecture Based on Hybrid CNN and Mamba for Medical Image Segmentation
by Xiaoxuan Ma, Yingao Du and Dong Sui
Appl. Sci. 2025, 15(14), 7821; https://doi.org/10.3390/app15147821 - 11 Jul 2025
Viewed by 315
Abstract
Accurate medical image segmentation plays a critical role in clinical diagnosis, treatment planning, and a wide range of healthcare applications. Although U-shaped CNNs and Transformer-based architectures have shown promise, CNNs struggle to capture long-range dependencies, whereas Transformers suffer from quadratic growth in computational [...] Read more.
Accurate medical image segmentation plays a critical role in clinical diagnosis, treatment planning, and a wide range of healthcare applications. Although U-shaped CNNs and Transformer-based architectures have shown promise, CNNs struggle to capture long-range dependencies, whereas Transformers suffer from quadratic growth in computational cost as image resolution increases. To address these issues, we propose HCMUNet, a novel medical image segmentation model that innovatively combines the local feature extraction capabilities of CNNs with the efficient long-range dependency modeling of Mamba, enhancing feature representation while reducing computational cost. In addition, HCMUNet features a redesigned skip connection and a novel attention module that integrates multi-scale features to recover spatial details lost during down-sampling and to promote richer cross-dimensional interactions. HCMUNet achieves Dice Similarity Coefficients (DSC) of 90.32%, 81.52%, and 92.11% on the ISIC 2018, Synapse multi-organ, and ACDC datasets, respectively, outperforming baseline methods by 0.65%, 1.05%, and 1.39%. Furthermore, HCMUNet consistently outperforms U-Net and Swin-UNet, achieving average Dice score improvements of approximately 5% and 2% across the evaluated datasets. These results collectively affirm the effectiveness and reliability of the proposed model across different segmentation tasks. Full article
Show Figures

Figure 1

41 pages, 2631 KiB  
Systematic Review
Brain-Computer Interfaces and AI Segmentation in Neurosurgery: A Systematic Review of Integrated Precision Approaches
by Sayantan Ghosh, Padmanabhan Sindhujaa, Dinesh Kumar Kesavan, Balázs Gulyás and Domokos Máthé
Surgeries 2025, 6(3), 50; https://doi.org/10.3390/surgeries6030050 - 26 Jun 2025
Viewed by 789
Abstract
Background: BCI and AI-driven image segmentation are revolutionizing precision neurosurgery by enhancing surgical accuracy, reducing human error, and improving patient outcomes. Methods: This systematic review explores the integration of AI techniques—particularly DL and CNNs—with neuroimaging modalities such as MRI, CT, EEG, and ECoG [...] Read more.
Background: BCI and AI-driven image segmentation are revolutionizing precision neurosurgery by enhancing surgical accuracy, reducing human error, and improving patient outcomes. Methods: This systematic review explores the integration of AI techniques—particularly DL and CNNs—with neuroimaging modalities such as MRI, CT, EEG, and ECoG for automated brain mapping and tissue classification. Eligible clinical and computational studies, primarily published between 2015 and 2025, were identified via PubMed, Scopus, and IEEE Xplore. The review follows PRISMA guidelines and is registered with the OSF (registration number: J59CY). Results: AI-based segmentation methods have demonstrated Dice similarity coefficients exceeding 0.91 in glioma boundary delineation and tumor segmentation tasks. Concurrently, BCI systems leveraging EEG and SSVEP paradigms have achieved information transfer rates surpassing 22.5 bits/min, enabling high-speed neural decoding with sub-second latency. We critically evaluate real-time neural signal processing pipelines and AI-guided surgical robotics, emphasizing clinical performance and architectural constraints. Integrated systems improve targeting precision and postoperative recovery across select neurosurgical applications. Conclusions: This review consolidates recent advancements in BCI and AI-driven medical imaging, identifies barriers to clinical adoption—including signal reliability, latency bottlenecks, and ethical uncertainties—and outlines research pathways essential for realizing closed-loop, intelligent neurosurgical platforms. Full article
Show Figures

Figure 1

19 pages, 6704 KiB  
Article
AI-Assisted Image Recognition of Cervical Spine Vertebrae in Dynamic X-Ray Recordings
by Esther van Santbrink, Valérie Schuermans, Esmée Cerfonteijn, Marcel Breeuwer, Anouk Smeets, Henk van Santbrink and Toon Boselie
Bioengineering 2025, 12(7), 679; https://doi.org/10.3390/bioengineering12070679 - 20 Jun 2025
Viewed by 498
Abstract
Background: Qualitative motion analysis revealed that the cervical spine moves according to a consistent pattern. This analysis calculates the relative rotation between vertebral segments to determine the sequence in which they contribute to extension, demonstrating a mean sensitivity of 90% and specificity of [...] Read more.
Background: Qualitative motion analysis revealed that the cervical spine moves according to a consistent pattern. This analysis calculates the relative rotation between vertebral segments to determine the sequence in which they contribute to extension, demonstrating a mean sensitivity of 90% and specificity of 85%. However, the extensive time that is required limits its applicability. This study investigated the feasibility of implementing a deep-learning model to analyze qualitative cervical motion. Methods: A U-Net architecture was implemented as 2D and 2D+t models. Dice similarity coefficient (DSC) and Intersection over Union (IoU) were used to assess the performance of the models. Intraclass Correlation Coefficient (ICC) was used to compare the relative rotation of individual vertebrae and segments to the ground truth. Results: IoU ranged from 0.37 to 0.74 and DSC ranged from 0.53 to 0.80. The ICC scores for relative rotation ranged from 0.62 to 0.96 for individual vertebrae and from 0.28 to 0.72 for vertebral segments. For segments, 2D+t models presented higher ICC scores compared to 2D models. Conclusions: This study showed the feasibility of implementing deep-learning models to analyze qualitative cervical motion in dynamic X-ray recordings. Future research should focus on improving model segmentation by enhancing recording contrast and applying post-processing methods. Improved segmentation accuracy will enable routine use of the analysis of motion patterns in clinical research. The absence or presence of a motion pattern, or identification of new patterns has the potential to aid in clinical decision-making. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

13 pages, 1178 KiB  
Article
Retrospective Evaluation of Baseline Amino Acid PET for Identifying Future Regions of Tumor Recurrence in High-Grade Glioma Patients
by Dylan Henssen, Michael Rullmann, Andreas Schildan, Stephan Striepe, Matti Schürer, Paola Feraco, Cordula Scherlach, Katja Jähne, Ruth Stassart, Osama Sabri, Clemens Seidel and Swen Hesse
Cancers 2025, 17(12), 1986; https://doi.org/10.3390/cancers17121986 - 14 Jun 2025
Viewed by 383
Abstract
Background/Objectives: Positron emission tomography (PET) imaging with radiolabeled amino acids is increasingly used in glioma patients for biopsy planning, tumor delineation, prognostication, and therapy response assessment. This study investigated whether baseline amino acid PET imaging could identify regions at risk of future tumor [...] Read more.
Background/Objectives: Positron emission tomography (PET) imaging with radiolabeled amino acids is increasingly used in glioma patients for biopsy planning, tumor delineation, prognostication, and therapy response assessment. This study investigated whether baseline amino acid PET imaging could identify regions at risk of future tumor recurrence. Methods: Retrospective case series of 14 patients with high-grade glioma. Contrast-enhanced magnetic resonance imaging (MRI) data of tumor recurrence and baseline imaging (PET-MRI) were co-registered. Volumes of interest (VOIs) of the high-grade glioma were derived from contrast-enhanced MRI at baseline and follow-up and from amino acid PET at baseline. The Dice similarity coefficient (DSC) was used to assess the overlap between VOIs. Furthermore, dynamic and static PET parameters were compared between the VOIs derived from contrast-enhanced MRI at follow-up and from the region of increased amino acid transport at baseline. Results: Regions of tumor recurrence in high-grade glioma patients overlap significantly more with baseline regions of increased amino acid transport on PET compared to regions of contrast enhancement on baseline MRI (p < 0.001). However, the static and dynamic PET statistics did not differentiate between regions that would later develop tumor recurrence and other areas of increased amino acid transport at baseline. Conclusions: These findings reaffirm the ability of amino acid PET to visualize the infiltrative components of gliomas not detected by contrast-enhanced MRI. Also, this study supports the role of amino acid PET in visualizing glioma infiltration beyond the MRI-visible tumor, but also indicates that accurately predicting the specific regions of recurrence based on baseline PET remains limited. Full article
Show Figures

Figure 1

25 pages, 1863 KiB  
Review
Deep Learning Segmentation Techniques for Atherosclerotic Plaque on Ultrasound Imaging: A Systematic Review
by Laura De Rosa, Serena L’Abbate, Eduarda Mota da Silva, Mauro Andretta, Elisabetta Bianchini, Vincenzo Gemignani, Claudia Kusmic and Francesco Faita
Information 2025, 16(6), 491; https://doi.org/10.3390/info16060491 - 13 Jun 2025
Viewed by 1532
Abstract
Background: Atherosclerotic disease is the leading global cause of death, driven by progressive plaque accumulation in the arteries. Ultrasound (US) imaging, both conventional (CUS) and intravascular (IVUS), is crucial for the non-invasive assessment of atherosclerotic plaques. Deep learning (DL) techniques have recently gained [...] Read more.
Background: Atherosclerotic disease is the leading global cause of death, driven by progressive plaque accumulation in the arteries. Ultrasound (US) imaging, both conventional (CUS) and intravascular (IVUS), is crucial for the non-invasive assessment of atherosclerotic plaques. Deep learning (DL) techniques have recently gained attention as tools to improve the accuracy and efficiency of image analysis in this domain. This paper reviews recent advancements in DL-based methods for the segmentation, classification, and quantification of atherosclerotic plaques in US imaging, focusing on their performance, clinical relevance, and translational challenges. Methods: A systematic literature search was conducted in the PubMed, Scopus, and Web of Science databases, following PRISMA guidelines. The review included peer-reviewed original articles published up to 31 January 2025 that applied DL models for plaque segmentation, characterization, and/or quantification in US images. Results: A total of 53 studies were included, with 72% focusing on carotid CUS and 28% on coronary IVUS. DL architectures, such as UNet and attention-based networks, were commonly used, achieving high segmentation accuracy with average Dice similarity coefficients of around 84%. Many models provided reliable quantitative outputs (such as total plaque area, plaque burden, and stenosis severity index) with correlation coefficients often exceeding R = 0.9 compared to manual annotations. Limitations included the scarcity of large, annotated, and publicly available datasets; the lack of external validation; and the limited availability of open-source code. Conclusions: DL-based approaches show considerable promise for advancing atherosclerotic plaque analysis in US imaging. To facilitate broader clinical adoption, future research should prioritize methodological standardization, external validation, data and code sharing, and integrating 3D US technologies. Full article
Show Figures

Figure 1

23 pages, 6234 KiB  
Article
Characterizing Breast Tumor Heterogeneity Through IVIM-DWI Parameters and Signal Decay Analysis
by Si-Wa Chan, Chun-An Lin, Yen-Chieh Ouyang, Guan-Yuan Chen, Chein-I Chang, Chin-Yao Lin, Chih-Chiang Hung, Chih-Yean Lum, Kuo-Chung Wang and Ming-Cheng Liu
Diagnostics 2025, 15(12), 1499; https://doi.org/10.3390/diagnostics15121499 - 12 Jun 2025
Viewed by 1590
Abstract
Background/Objectives: This research presents a novel analytical method for breast tumor characterization and tissue classification by leveraging intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with hyperspectral imaging techniques and deep learning. Traditionally, dynamic contrast-enhanced MRI (DCE-MRI) is employed for breast tumor diagnosis, but [...] Read more.
Background/Objectives: This research presents a novel analytical method for breast tumor characterization and tissue classification by leveraging intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) combined with hyperspectral imaging techniques and deep learning. Traditionally, dynamic contrast-enhanced MRI (DCE-MRI) is employed for breast tumor diagnosis, but it involves gadolinium-based contrast agents, which carry potential health risks. IVIM imaging extends conventional diffusion-weighted imaging (DWI) by explicitly separating the signal decay into components representing true molecular diffusion (D) and microcirculation of capillary blood (pseudo-diffusion or D*). This separation allows for a more comprehensive, non-invasive assessment of tissue characteristics without the need for contrast agents, thereby offering a safer alternative for breast cancer diagnosis. The primary purpose of this study was to evaluate different methods for breast tumor characterization using IVIM-DWI data treated as hyperspectral image stacks. Dice similarity coefficients and Jaccard indices were specifically used to evaluate the spatial segmentation accuracy of tumor boundaries, confirmed by experienced physicians on dynamic contrast-enhanced MRI (DCE-MRI), emphasizing detailed tumor characterization rather than binary diagnosis of cancer. Methods: The data source for this study consisted of breast MRI scans obtained from 22 patients diagnosed with mass-type breast cancer, resulting in 22 distinct mass tumor cases analyzed. MR images were acquired using a 3T MRI system (Discovery MR750 3.0 Tesla, GE Healthcare, Chicago, IL, USA) with axial IVIM sequences and a bipolar pulsed gradient spin echo sequence. Multiple b-values ranging from 0 to 2500 s/mm2 were utilized, specifically thirteen original b-values (0, 15, 30, 45, 60, 100, 200, 400, 600, 1000, 1500, 2000, and 2500 s/mm2), with the last four b-value images replicated once for a total of 17 bands used in the analysis. The methodology involved several steps: acquisition of multi-b-value IVIM-DWI images, image pre-processing, including correction for motion and intensity inhomogeneity, treating the multi-b-value data as hyperspectral image stacks, applying hyperspectral techniques like band expansion, and evaluating three tumor detection methods: kernel-based constrained energy minimization (KCEM), iterative KCEM (I-KCEM), and deep neural networks (DNNs). The comparisons were assessed by evaluating the similarity of the detection results from each method to ground truth tumor areas, which were manually drawn on DCE-MRI images and confirmed by experienced physicians. Similarity was quantitatively measured using the Dice similarity coefficient and the Jaccard index. Additionally, the performance of the detectors was evaluated using 3D-ROC analysis and its derived criteria (AUCOD, AUCTD, AUCBS, AUCTDBS, AUCODP, AUCSNPR). Results: The findings objectively demonstrated that the DNN method achieved superior performance in breast tumor detection compared to KCEM and I-KCEM. Specifically, the DNN yielded a Dice similarity coefficient of 86.56% and a Jaccard index of 76.30%, whereas KCEM achieved 78.49% (Dice) and 64.60% (Jaccard), and I-KCEM achieved 78.55% (Dice) and 61.37% (Jaccard). Evaluation using 3D-ROC analysis also indicated that the DNN was the best detector based on metrics like target detection rate and overall effectiveness. The DNN model further exhibited the capability to identify tumor heterogeneity, differentiating high- and low-cellularity regions. Quantitative parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (PF), were calculated and analyzed, providing insights into the diffusion characteristics of different breast tissues. Analysis of signal intensity decay curves generated from these parameters further illustrated distinct diffusion patterns and confirmed that high cellularity tumor regions showed greater water molecule confinement compared to low cellularity regions. Conclusions: This study highlights the potential of combining IVIM-DWI, hyperspectral imaging techniques, and deep learning as a robust, safe, and effective non-invasive diagnostic tool for breast cancer, offering a valuable alternative to contrast-enhanced methods by providing detailed information about tissue microstructure and heterogeneity without the need for contrast agents. Full article
(This article belongs to the Special Issue Recent Advances in Breast Cancer Imaging)
Show Figures

Figure 1

15 pages, 2843 KiB  
Article
Improving the Precision of Deep-Learning-Based Head and Neck Target Auto-Segmentation by Leveraging Radiology Reports Using a Large Language Model
by Libing Zhu, Jean-Claude M. Rwigema, Xue Feng, Bilaal Ansari, Jingwei Duan, Yi Rong and Quan Chen
Cancers 2025, 17(12), 1935; https://doi.org/10.3390/cancers17121935 - 10 Jun 2025
Viewed by 508
Abstract
Background/Objectives: The accurate delineation of primary tumors (GTVp) and metastatic lymph nodes (GTVn) in head and neck (HN) cancers is essential for effective radiation treatment planning, yet remains a challenging and laborious task. This study aims to develop a deep-learning-based auto-segmentation (DLAS) [...] Read more.
Background/Objectives: The accurate delineation of primary tumors (GTVp) and metastatic lymph nodes (GTVn) in head and neck (HN) cancers is essential for effective radiation treatment planning, yet remains a challenging and laborious task. This study aims to develop a deep-learning-based auto-segmentation (DLAS) model trained on external datasets with false-positive elimination using clinical diagnosis reports. Methods: The DLAS model was trained on a multi-institutional public dataset with 882 cases. Forty-four institutional cases were randomly selected as the external testing dataset. DLAS-generated GTVp and GTVn were validated against clinical diagnosis reports to identify false-positive and false-negative segmentation errors using two large language models: ChatGPT-4 and Llama-3. False-positive ruling out was conducted by matching the centroids of AI-generated contours with the slice locations or anatomical regions described in the reports. Performance was evaluated using the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), and tumor detection precision. Results: ChatGPT-4 outperformed Llama-3 in accurately extracting tumor locations from the diagnostic reports. False-positive contours were identified in 15 out of 44 cases. The DSCmean of the DLAS contours for GTVp and GTVn increased from 0.68 to 0.75 and from 0.69 to 0.75, respectively, after the ruling-out process. Notably, the average HD95 value for GTVn decreased from 18.81 mm to 5.2 mm. Post ruling out, the model achieved 100% precision for GTVp and GTVn when compared with the results of physician-determined contours. Conclusions: The false-positive ruling-out approach based on diagnostic reports effectively enhances the precision of DLAS in the HN region. The model accurately identifies the tumor location and detects all false-negative errors. Full article
Show Figures

Figure 1

17 pages, 9400 KiB  
Article
MRCA-UNet: A Multiscale Recombined Channel Attention U-Net Model for Medical Image Segmentation
by Lei Liu, Xiang Li, Shuai Wang, Jun Wang and Silas N. Melo
Symmetry 2025, 17(6), 892; https://doi.org/10.3390/sym17060892 - 6 Jun 2025
Viewed by 497
Abstract
Deep learning techniques play a crucial role in medical image segmentation for diagnostic purposes, with traditional convolutional neural networks (CNNs) and emerging transformers having achieved satisfactory results. CNN-based methods focus on extracting the local features of an image, which are beneficial for handling [...] Read more.
Deep learning techniques play a crucial role in medical image segmentation for diagnostic purposes, with traditional convolutional neural networks (CNNs) and emerging transformers having achieved satisfactory results. CNN-based methods focus on extracting the local features of an image, which are beneficial for handling image details and textural features. However, the receptive fields of CNNs are relatively small, resulting in poor performance when processing images with long-range dependencies. Conversely, transformer-based methods are effective in handling global information; however, they suffer from significant computational complexity arising from the building of long-range dependencies. Additionally, they lack the ability to perceive image details and adopt channel features. These problems can result in unclear image segmentation and blurred boundaries. Accordingly, in this study, a multiscale recombined channel attention (MRCA) module is proposed, which can simultaneously extract both global and local features and has the capability of exploring channel features during feature fusion. Specifically, the proposed MRCA first employs multibranch extraction of image features and performs operations such as blocking, shifting, and aggregating the image at different scales. This step enables the model to recognize multiscale information locally and globally. Feature selection is then performed to enhance the predictive capability of the model. Finally, features from different branches are connected and recombined across channels to complete the feature fusion. Benefiting from fully exploring the channel features, an MRCA-based U-Net (MRCA-UNet) framework is proposed for medical image segmentation. Experiments conducted on the Synapse multi-organ segmentation (Synapse) dataset and the International Skin Imaging Collaboration (ISIC-2018) dataset demonstrate the competitive segmentation performance of the proposed MRCA-UNet, achieving an average Dice Similarity Coefficient (DSC) of 81.61% and a Hausdorff Distance (HD) of 23.36 on Synapse and an Accuracy of 95.94% on ISIC-2018. Full article
Show Figures

Figure 1

16 pages, 2032 KiB  
Article
Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer
by Sijuan Huang, Jingheng Wu, Xi Lin, Guangyu Wang, Ting Song, Li Chen, Lecheng Jia, Qian Cao, Ruiqi Liu, Yang Liu, Xin Yang, Xiaoyan Huang and Liru He
Bioengineering 2025, 12(6), 620; https://doi.org/10.3390/bioengineering12060620 - 6 Jun 2025
Viewed by 565
Abstract
Objective: The objective of this study was to develop and assess the clinical feasibility of auto-segmentation and auto-planning methodologies for automated radiotherapy in prostate cancer. Methods: A total of 166 patients were used to train a 3D Unet model for segmentation of [...] Read more.
Objective: The objective of this study was to develop and assess the clinical feasibility of auto-segmentation and auto-planning methodologies for automated radiotherapy in prostate cancer. Methods: A total of 166 patients were used to train a 3D Unet model for segmentation of the gross tumor volume (GTV), clinical tumor volume (CTV), nodal CTV (CTVnd), and organs at risk (OARs). Performance was assessed by the Dice similarity coefficient (DSC), the Recall, Precision, Volume Ratio (VR), the 95% Hausdorff distance (HD95%), and the volumetric revision degree (VRD). An auto-planning network based on a 3D Unet was trained on 77 treatment plans derived from the 166 patients. Dosimetric differences and clinical acceptability of the auto-plans were studied. The effect of OAR editing on dosimetry was also evaluated. Results: On an independent set of 50 cases, the auto-segmentation process took 1 min 20 s per case. The DSCs for GTV, CTV, and CTVnd were 0.87, 0.88, and 0.82, respectively, with VRDs ranging from 0.09 to 0.14. The segmentation of OARs demonstrated high accuracy (DSC ≥ 0.83, Recall/Precision ≈ 1.0). The auto-planning process required 1–3 optimization iterations for 50%, 40%, and 10% of cases, respectively, and exhibited significant better conformity (p ≤ 0.01) and OAR sparing (p ≤ 0.03) while maintaining comparable target coverage. Only 6.7% of auto-plans were deemed unacceptable compared to 20% of manual plans, with 75% of auto-plans considered superior. Notably, the editing of OARs had no significant impact on doses. Conclusions: The accuracy of auto-segmentation is comparable to that of manual segmentation, and the auto-planning offers equivalent or better OAR protection, meeting the requirements of online automated radiotherapy and facilitating its clinical application. Full article
(This article belongs to the Special Issue Novel Imaging Techniques in Radiotherapy)
Show Figures

Figure 1

15 pages, 7136 KiB  
Article
Source-Free Domain Adaptation for Cross-Modality Abdominal Multi-Organ Segmentation Challenges
by Xiyu Zhang, Xu Chen, Yang Wang, Dongliang Liu and Yifeng Hong
Information 2025, 16(6), 460; https://doi.org/10.3390/info16060460 - 29 May 2025
Viewed by 383
Abstract
Abdominal organ segmentation in CT images is crucial for accurate diagnosis, treatment planning, and condition monitoring. However, the annotation process is often hindered by challenges such as low contrast, artifacts, and complex organ structures. While unsupervised domain adaptation (UDA) has shown promise in [...] Read more.
Abdominal organ segmentation in CT images is crucial for accurate diagnosis, treatment planning, and condition monitoring. However, the annotation process is often hindered by challenges such as low contrast, artifacts, and complex organ structures. While unsupervised domain adaptation (UDA) has shown promise in addressing these issues by transferring knowledge from a different modality (source domain), its reliance on both source and target data during training presents a practical challenge in many clinical settings due to data privacy concerns. This study aims to develop a cross-modality abdominal multi-organ segmentation model for label-free CT (target domain) data, leveraging knowledge solely from a pre-trained source domain (MRI) model without accessing the source data. To achieve this, we generate source-like images from target-domain images using a one-way image translation approach with the pre-trained model. These synthesized images preserve the anatomical structure of the target, enabling segmentation predictions from the pre-trained model. To further enhance segmentation accuracy, particularly for organ boundaries and small contours, we introduce an auxiliary translation module with an image decoder and multi-level discriminator. The results demonstrate significant improvements across several performance metrics, including the Dice similarity coefficient (DSC) and average symmetric surface distance (ASSD), highlighting the effectiveness of the proposed method. Full article
Show Figures

Figure 1

32 pages, 2404 KiB  
Review
Bio-Inspired Metaheuristics in Deep Learning for Brain Tumor Segmentation: A Decade of Advances and Future Directions
by Shoffan Saifullah, Rafał Dreżewski, Anton Yudhana, Wahyu Caesarendra and Nurul Huda
Information 2025, 16(6), 456; https://doi.org/10.3390/info16060456 - 29 May 2025
Cited by 1 | Viewed by 795
Abstract
Accurate segmentation of brain tumors in magnetic resonance imaging (MRI) remains a challenging task due to heterogeneous tumor structures, varying intensities across modalities, and limited annotated data. Deep learning has significantly advanced segmentation accuracy; however, it often suffers from sensitivity to hyperparameter settings [...] Read more.
Accurate segmentation of brain tumors in magnetic resonance imaging (MRI) remains a challenging task due to heterogeneous tumor structures, varying intensities across modalities, and limited annotated data. Deep learning has significantly advanced segmentation accuracy; however, it often suffers from sensitivity to hyperparameter settings and limited generalization. To overcome these challenges, bio-inspired metaheuristic algorithms have been increasingly employed to optimize various stages of the deep learning pipeline—including hyperparameter tuning, preprocessing, architectural design, and attention modulation. This review systematically examines developments from 2015 to 2025, focusing on the integration of nature-inspired optimization methods such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and novel hybrids including CJHBA and BioSwarmNet into deep learning-based brain tumor segmentation frameworks. A structured multi-query search strategy was executed using Publish or Perish across Google Scholar and Scopus databases. Following PRISMA guidelines, 3895 records were screened through automated filtering and manual eligibility checks, yielding a curated set of 106 primary studies. Through bibliometric mapping, methodological synthesis, and performance analysis, we highlight trends in algorithm usage, application domains (e.g., preprocessing, architecture search), and segmentation outcomes measured by metrics such as Dice Similarity Coefficient (DSC), Jaccard Index (JI), Hausdorff Distance (HD), and ASSD. Our findings demonstrate that bio-inspired optimization significantly enhances segmentation accuracy and robustness, particularly in multimodal settings involving FLAIR and T1CE modalities. The review concludes by identifying emerging research directions in hybrid optimization, real-time clinical applicability, and explainable AI, providing a roadmap for future exploration in this interdisciplinary domain. Full article
(This article belongs to the Section Review)
Show Figures

Figure 1

Back to TopTop