Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = diapycnal transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3896 KiB  
Article
Deep Turbulence as a Novel Main Driver for Multi-Specific Toxic Algal Blooms: The Case of an Anoxic and Heavy Metal-Polluted Submarine Canyon That Harbors Toxic Dinoflagellate Resting Cysts
by Camilo Rodríguez-Villegas, Iván Pérez-Santos, Patricio A. Díaz, Ángela M. Baldrich, Matthew R. Lee, Gonzalo S. Saldías, Guido Mancilla-Gutiérrez, Cynthia Urrutia, Claudio R. Navarro, Daniel A. Varela, Lauren Ross and Rosa I. Figueroa
Microorganisms 2024, 12(10), 2015; https://doi.org/10.3390/microorganisms12102015 - 4 Oct 2024
Viewed by 1593
Abstract
Over the recent decades, an apparent worldwide rise in Harmful Algae Blooms (HABs) has been observed due to the growing exploitation of the coastal environment, the exponential growth of monitoring programs, and growing global maritime transport. HAB species like Alexandrium catenella—responsible for [...] Read more.
Over the recent decades, an apparent worldwide rise in Harmful Algae Blooms (HABs) has been observed due to the growing exploitation of the coastal environment, the exponential growth of monitoring programs, and growing global maritime transport. HAB species like Alexandrium catenella—responsible for paralytic shellfish poisoning (PSP)—Protoceratium reticulatum, and Lingulaulax polyedra (yessotoxin producers) are a major public concern due to their negative socioeconomic impacts. The significant northward geographical expansion of A. catenella into more oceanic-influenced waters from the fjords where it is usually observed needs to be studied. Currently, their northern boundary reaches the 36°S in the Biobio region where sparse vegetative cells were recently observed in the water column. Here, we describe the environment of the Biobio submarine canyon using sediment and water column variables and propose how toxic resting cyst abundance and excystment are coupled with deep-water turbulence (10−7 Watt/kg) and intense diapycnal eddy diffusivity (10−4 m2 s−1) processes, which could trigger a mono or multi-specific harmful event. The presence of resting cysts may not constitute an imminent risk, with these resting cysts being subject to resuspension processes, but may represent a potent indicator of the adaptation of HAB species to new environments like the anoxic Biobio canyon. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 4017 KiB  
Article
Application of Three-Dimensional Interpolation in Estimating Diapycnal Diffusivity in the South China Sea
by Junting Guo, Yafei Nie, Shuang Li and Xianqing Lv
J. Mar. Sci. Eng. 2020, 8(11), 832; https://doi.org/10.3390/jmse8110832 - 22 Oct 2020
Cited by 8 | Viewed by 2262
Abstract
Diapycnal diffusivity is an important parameter to characterize oceanic turbulent mixing and vertical transport. However, due to the challenging accessibility of field observations, the observation of diapycnal diffusivity in the South China Sea (SCS) is rare. In this study, a three-dimensional field of [...] Read more.
Diapycnal diffusivity is an important parameter to characterize oceanic turbulent mixing and vertical transport. However, due to the challenging accessibility of field observations, the observation of diapycnal diffusivity in the South China Sea (SCS) is rare. In this study, a three-dimensional field of diapycnal diffusivity in the SCS with high spatial resolution is performed by interpolating the rare field observations, which aims to provide a reference for the value of diapycnal diffusivity in ocean models. Given the anisotropy of diapycnal diffusivity and its rapid change in the magnitude in the vertical direction, several typical interpolation methods are compared in this study. Results of two cross-validation methods demonstrate that the three-dimensional (3D) thin-plate spline interpolation method yields the most reasonable and accurate results among a total of five typical methods used in this study. Full article
Show Figures

Figure 1

20 pages, 7008 KiB  
Article
Approximating Isoneutral Ocean Transport via the Temporal Residual Mean
by Andrew L. Stewart
Fluids 2019, 4(4), 179; https://doi.org/10.3390/fluids4040179 - 2 Oct 2019
Cited by 4 | Viewed by 2702
Abstract
Ocean volume and tracer transports are commonly computed on density surfaces because doing so approximates the semi-Lagrangian mean advective transport. The resulting density-averaged transport can be related approximately to Eulerian-averaged quantities via the Temporal Residual Mean (TRM), valid in the limit of small [...] Read more.
Ocean volume and tracer transports are commonly computed on density surfaces because doing so approximates the semi-Lagrangian mean advective transport. The resulting density-averaged transport can be related approximately to Eulerian-averaged quantities via the Temporal Residual Mean (TRM), valid in the limit of small isopycnal height fluctuations. This article builds on a formulation of the TRM for volume fluxes within Neutral Density surfaces, (the “NDTRM”), selected because Neutral Density surfaces are constructed to be as neutral as possible while still forming well-defined surfaces. This article derives a TRM, referred to as the “Neutral TRM” (NTRM), that approximates volume fluxes within surfaces whose vertical fluctuations are defined directly by the neutral relation. The purpose of the NTRM is to more closely approximate the semi-Lagrangian mean transport than the NDTRM, because the latter introduces errors associated with differences between the instantaneous state of the modeled/observed ocean and the reference climatology used to assign the Neutral Density variable. It is shown that the NDTRM collapses to the NTRM in the limiting case of a Neutral Density variable defined with reference to the Eulerian-mean salinity, potential temperature and pressure, rather than an external reference climatology, and therefore that the NTRM approximately advects this density variable. This prediction is verified directly using output from an idealized eddy-resolving numerical model. The NTRM therefore offers an efficient and accurate estimate of modeled semi-Lagrangian mean transports without reference to an external reference climatology, but requires that a Neutral Density variable be computed once from the model’s time-mean state in order to estimate isopycnal and diapycnal components of the transport. Full article
(This article belongs to the Collection Geophysical Fluid Dynamics)
Show Figures

Figure 1

25 pages, 5791 KiB  
Article
Diapycnal Velocity in the Double-Diffusive Thermocline
by Timour Radko and Erick Edwards
Fluids 2016, 1(3), 25; https://doi.org/10.3390/fluids1030025 - 25 Aug 2016
Cited by 2 | Viewed by 7712
Abstract
A series of large-scale numerical simulations is presented, which incorporate parameterizations of vertical mixing of temperature and salinity by double-diffusion and by small-scale turbulence. These simulations reveal the tendency of double-diffusion to constrain diapycnal volume transport, both upward and downward. For comparable values [...] Read more.
A series of large-scale numerical simulations is presented, which incorporate parameterizations of vertical mixing of temperature and salinity by double-diffusion and by small-scale turbulence. These simulations reveal the tendency of double-diffusion to constrain diapycnal volume transport, both upward and downward. For comparable values of mixing coefficients, the average diapycnal velocity in the double-diffusive thermocline is much less than in the corresponding turbulent regime. The insulating effect of double-diffusion is rationalized using two theoretical models. The first argument is based on the assumed vertical advective-diffusive balance. The second theory uses the Rhines and Young technique to evaluate the net diapycnal transport across regions bounded by closed streamlines at a given density surface. The numerical simulations and associated analytical arguments in this study underscore fundamental differences between double-diffusive mixing and mechanically generated small-scale turbulence. When both double-diffusion and turbulence are taken into account, we find that the constraints on diapycnal velocity loosen (tighten) with the increase (decrease) of the fraction of the overall mixing attributed to turbulence. The range of diapycnal velocities that could be realized in doubly-diffusive fluids is determined by the variation in the heat/salt flux ratio. We hypothesize that the unique ability of double-diffusive mixing to actively control diapycnal volume transport may have significant ramifications for the structure and dynamics of thermohaline circulation in the ocean. Full article
(This article belongs to the Collection Geophysical Fluid Dynamics)
Show Figures

Graphical abstract

Back to TopTop