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Abstract: Ocean volume and tracer transports are commonly computed on density surfaces
because doing so approximates the semi-Lagrangian mean advective transport. The resulting
density-averaged transport can be related approximately to Eulerian-averaged quantities via
the Temporal Residual Mean (TRM), valid in the limit of small isopycnal height fluctuations.
This article builds on a formulation of the TRM for volume fluxes within Neutral Density surfaces,
(the “NDTRM”), selected because Neutral Density surfaces are constructed to be as neutral as possible
while still forming well-defined surfaces. This article derives a TRM, referred to as the “Neutral
TRM” (NTRM), that approximates volume fluxes within surfaces whose vertical fluctuations are
defined directly by the neutral relation. The purpose of the NTRM is to more closely approximate the
semi-Lagrangian mean transport than the NDTRM, because the latter introduces errors associated
with differences between the instantaneous state of the modeled/observed ocean and the reference
climatology used to assign the Neutral Density variable. It is shown that the NDTRM collapses to the
NTRM in the limiting case of a Neutral Density variable defined with reference to the Eulerian-mean
salinity, potential temperature and pressure, rather than an external reference climatology, and
therefore that the NTRM approximately advects this density variable. This prediction is verified
directly using output from an idealized eddy-resolving numerical model. The NTRM therefore offers
an efficient and accurate estimate of modeled semi-Lagrangian mean transports without reference
to an external reference climatology, but requires that a Neutral Density variable be computed once
from the model’s time-mean state in order to estimate isopycnal and diapycnal components of
the transport.

Keywords: isoneutral transport; Temporal Residual Mean; overturning circulation; Neutral Density

1. Introduction

Accurate quantification of the ocean’s meridional overturning circulation (MOC) is required
to infer oceanic transport of heat and other tracers around the globe [1,2]. It has been common
practice for decades to quantify the MOC in some form of density coordinate system (e.g., [3–8]).
Because flow in the ocean interior is quasi-adiabatic, this approach approximately corresponds to
taking a semi-Lagrangian mean, which in turn approximates the full Lagrangian-mean transport [9].
In comparison to an MOC based on mass fluxes averaged at constant depth, the semi-Lagrangian
mean transport velocity contains an additional “eddy” transport, essentially a generalized Stokes
drift [10]. This eddy transport is particularly important in the Southern Ocean [11–13], and therefore
forms a key component of recent conceptual models of the global overturning circulation [14–19].

The separation of the semi-Lagrangian mean transport into mean and eddy components can be
made explicit via the Temporal Residual Mean (TRM) formulation, which is valid in the asymptotic
limit of small isopycnal height fluctuations [9,20,21]. In this article we use “TRM” to refer to the
TRM-II [21], but it is straightforward to extend our results to the TRM-I; the distinction between the

Fluids 2019, 4, 179; doi:10.3390/fluids4040179 www.mdpi.com/journal/fluids

http://www.mdpi.com/journal/fluids
http://www.mdpi.com
https://orcid.org/0000-0001-5861-4070
http://dx.doi.org/10.3390/fluids4040179
http://www.mdpi.com/journal/fluids
https://www.mdpi.com/2311-5521/4/4/179?type=check_update&version=3


Fluids 2019, 4, 179 2 of 20

two is discussed by [22]. The TRM relates the eddy component of the transport to correlations between
the lateral velocity (u) and density (γ) fields, and thereby allows an estimate of the semi-Lagrangian
mean transport streamfunction to be computed from Eulerian-averaged quantities. The resulting
TRM streamfunction Ψ advects the density variable γ in the following sense: in the absence of
non-conservative sources and sinks of γ, the density γ is materially conserved following the transport
velocity defined by Ψ, up to a consistent asymptotic order in the amplitude of the isopycnal height
fluctuations [22].

This article builds upon the Neutral Density Temporal Residual Mean (NDTRM) formulation ([23],
[hereafter ST15]). In ST15’s formulation the Neutral Density variable of [24], referred to henceforth
as γJM97, was the advected density variable. However, the transport streamfunction Ψ was
calculated from correlations between the lateral velocity, salinity, potential temperature and pressure.
This approach bears the following advantages: (i) The NDTRM can be applied in regions where
potential density referenced to any level becomes vertically non-monotonic somewhere in the water
column (e.g., parts of the high-latitude oceans). (ii) The NDTRM circumvents the computational
expense of calculating Neutral Density globally at every model time step, as would be required
to compute the semi-Lagrangian mean transport velocity, either exactly or via the TRM. (iii) More
fundamentally, isopycnals of Neutral Density are more closely aligned with the local neutral tangent
plane, in a global sense, than any potential density variable [24]. ST15 compared various formulations
of the TRM, and verified that higher-order approximations to the NDTRM most closely approximated
the volume fluxes computed exactly within γJM97 surfaces from numerical model output. The NDTRM
therefore offers a computationally efficient estimate of isopycnal volume fluxes within surfaces of
a stably stratified density variable that has been used widely in quantifications of the ocean’s global
overturning circulation (e.g., [5,25]).

In this article we pursue the related but distinct goal of approximating the semi-Lagrangian
mean transport using vertical fluctuations defined directly by the neutral relationship [26], which we
refer to as local Neutral Surfaces. In pursing this goal we make the assumption that it is these local
Neutral Surfaces that should heave vertically under perfectly adiabatic motions [27,28], and therefore
that they are best suited for calculation of the semi-Lagrangian mean transport [9]. The validity of
these assumptions is discussed further in Section 5. In Section 2 we summarize relevant background
literature, specifically the formulation of the TRM [20,21] and the derivation of the NDTRM by ST15.
In Section 3 we derive a form of the TRM, which we refer to as the “Neutral TRM” (NTRM), that
approximates volume fluxes within local Neutral Surfaces. However, Neutral Surfaces are globally
ill-defined [29]. This means that isoneutral volume fluxes cannot be associated with a globally-defined,
stably-stratified density variable [30], which is desireable for quantifying global circulation and water
mass transformation [5,25,31]. This motivates us to return to the NDTRM, which is associated with
a globally-defined density variable, and consider the special case of a Neutral Density constructed with
reference to the Eulerian-mean salinity, potential temperature and pressure. We show that in this case,
the NDTRM reduces to the NTRM to a consistent asymptotic order in the amplitude of the isopycnal
height fluctuations. This implies that the NTRM advects a Neutral Density variable defined with
respect to the Eulerian-mean ocean state, again up to a consistent asymptotic order in the amplitude
of the isopycnal height fluctuations. In Section 4 we evaluate our results using idealized numerical
simulations, and verify that the NTRM and NDTRM more closely approximate volume fluxes within
Neutral Density surfaces constructed based on the model’s mean state and based on an independent
reference dataset, respectively. Finally, in Section 5 we summarize and provide concluding remarks.

2. Approximating Volume Fluxes within Neutral Density Surfaces

There is a substantial existing literature on the subjects of Neutral Surfaces and the TRM
approximation (e.g., [20,21,24,26]). To achieve a self-contained presentation, this section summarizes
relevant concepts from this literature, and from the derivation of the NDTRM by ST15.
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2.1. The Temporal Residual Mean (TRM) Streamfunction

The TRM transport is fundamentally related to fluctuations of material or quasi-material surfaces,
typically defined in terms of a density/buoyancy variable [20,21]. While it is impractical to quantify
the Lagrangian-mean transport of fluid parcels in the ocean in the most general sense [32], a close
approximation can be obtained by exploiting vertically stratified, quasi-material surfaces, commonly
defined via a suitable density or buoyancy variable [22]. Consider a series of vertically monotonic,
temporally-evolving, quasi-material surfaces identified by a label γ0, currently not assigned any
physical meaning. We define a streamfunction Ψ at any horizontal point (x0, y0) on surface γ0 as the
lateral mass flux above that surface,

Ψ(x0, y0, γ0) =
∫ z=0

z=z0(x0,y0,γ0,t)
u dz, (1)

where u = (u, v) is the horizontal velocity vector and we have assumed a flat ocean surface (z = 0) for
simplicity. The overline indicates a time average, but could be interpreted more broadly as an average
over an ensemble of realizations of the flow [33].

The TRM approximates the mass flux defined in (1) under the assumption of small fluctuations
in the quasi-material surfaces, i.e., z0 = z0 + z′0 with z′0 = O(ε) assumed to be asymptotically small.
Here ε may be interpreted as the magnitude of the surface fluctuation relative to some vertical length
scale such as the ocean depth H, so ε = z′0/H � 1. Using Taylor expansions of (1), it may be shown
(e.g., [21,23]) that Ψ may be approximated in Eulerian coordinates as a sum of mean and “eddy”
components, defined as

Ψ(x0, y0, z0) = Ψ + Ψ?, (2)

Ψ =
∫ 0

z0

u dz, (3)

Ψ? = −u′(z0)z′0 −
1
2 uz(z0) z′0

2 +O
(

ε3
)

. (4)

Here, and henceforth in this manuscript, the rules of Reynolds averaging are assumed to apply unless
otherwise stated, i.e., • = • and •′ = 0 for any •. Note that Ψ and Ψ? are streamfunctions in the sense
that their curl is equal to a non-divergent velocity field.

To write (2) in terms of only mean quantities, and therefore to create a useful approximation to the
ocean’s Lagrangian-mean velocities, we require a suitable approximation to the surface fluctuations z′0.

Correlations of quantities such as u′z′0 and z′0
2 are not routinely provided as output from ocean models

formulated in Eulerian vertical coordinate systems, partly due to the ambiguity in the definition of
z0, so instead z′0 is typically related to Eulerian fluctuations of thermodynamic variables (e.g., [22,23]).
For a vertically monotonic label γ, we can further Taylor-expand our continuum of labels γ to obtain
an O(ε2) approximation to z′0 [21,22],

γ′(z0) = −z′0γz(z0) +O
(

ε2
)

, (5)

allowing us to express the TRM “eddy” streamfunction in terms of purely Eulerian variables,

Ψ?(x0, y0, z0) =
u′γ′

γz
− 1

2
uz

γ2
z

γ′2 +O
(

ε3
)

. (6)

Note that all variables on the right-hand side are evaluated at the mean surface elevation z0.
Additionally, note that the O(ε3) error terms on the right-hand side of (6) differ from those on the
right-hand side of (4); additional O(ε3) terms have been included in the error term following the
substitution for γ′ using (5). In the interst of brevity, throughout this article we will write the error
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terms in terms of their lowest-order dependence on the relevant asymptotically small parameters
without specifically identifying when the mathematical definition of the error terms has changed.

In the form of equation (6), the TRM streamfunction is in principle straightforward to calculate
from ocean model output if we associate γ with, for example, potential density or Neutral Density ([24],
discussed in Section 2.2). However, potential density surfaces are not particularly neutral, while the
Neutral Density variable of [24] is too computationally expensive for practical use in ocean models [23].

2.2. The Neutral Density Temporal Residual Mean (NDTRM)

ST15 derived alternative expressions to (5) for the vertical fluctuations (z′0) of isopycnals of
a Neutral Density variable (γ). These expressions contain no explicit dependence on γ itself, and so
circumvent the need to explicitly compute a Neutral Density variable in order to construct the TRM.
Here we briefly summarize the portions of this derivation and the resulting expressions for z′0 required
in Section 3.

The Neutral Density variable of [24] is assigned based on geographically distributed reference
casts. Each reference cast is pre-labeled with Neutral Density γ as a function of depth, such that the
cast potential temperature, salinity and pressure may be written as θc(γ), Sc(γ) and pc(γ), respectively.
To assign a Neutral Density label to a given point in space and time, the potential temperature (θ0),
salinity (S0) and pressure (p0) at that point are compared with a nearby reference cast. Specifically, the
assigned value of γ is that which satisfies the “discrete neutral relation”, which ST15 wrote as

(Sc(γ)− S0) βm − (θc(γ)− θ0) αm = O(∆3). (7)

This relation states that water parcels with properties (S0, θ0, p0) and (Sc(γ), θc(γ), pc(γ)) would have
equal densities if both were moved adiabatically and isentropically to the mid-point pressure between
the two parcels. Here βm and αm are short-hands for

βm ≡ β(Sm, θm, pm), αm ≡ α(Sm, θm, pm), (8)

i.e., the saline contraction and thermal expansion coefficients evaluated at the thermodynamic
mid-point (Sm, θm, pm), which is defined as

Sm(γ) ≡ (S0 + Sc(γ))/2, (9)

θm(γ) ≡ (θ0 + θc(γ))/2, (10)

pm(γ) ≡ (p0 + pc(γ))/2. (11)

The small parameter ∆ measures deviations of the properties (S0, θ0, p0) from the mid-values
(Sm, θm, pm). See [23] for further details on the definition of ∆ and the asymptotic derivation of
(7).

To derive an expression for the vertical fluctuations of a Neutral Density surface, ST15 considered
the semi-Lagrangian evolution of the thermodynamic properties on such a surface, i.e., S0 = S(z0(t), t),
θ0 = θ(z0(t), t), and p0 = p(z0(t), t). They then posed Taylor expansions of (7) in terms of ε and ∆, e.g.,

S(z0(t), t) = S(z0, t) + Sz(z0, t)z′0 + S′(z0, t) +O
(

ε2
)

. (12)

where S′(z0, t) = S(z0, t)− S(z0, t) is the Eulerian fluctuation of the salinity at z = z0.
In this article we restrict our attention to the Boussinesq case for simplicity. This effectively

corresponds to replacing p0, pc and pm by z0, zc and zm, where zc is the depth of the Neutral Density
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label γ on the reference cast and zm = 1
2 (z0 + zc). In this case, the highest-order NDTRM approximation

to z′0 (the “NDTRM2” of ST15) is

z′NDTRM2

{
− Sz β̂m + θz α̂m +

(
Sc − S

) [ 1
2 Sz

∂β̂m

∂Sm
+ 1

2 θz
∂β̂m

∂θm
+ 1

2
∂β̂m

∂zm

]

−
(
θc − θ

) [ 1
2 Sz

∂α̂m

∂Sm
+ 1

2 θz
∂α̂m

∂θm
+ 1

2
∂α̂m

∂zm

] }

= −
{
−S′ β̂m + θ′ α̂m +

(
Sc − S

) [ 1
2 S′

∂β̂m

∂Sm
+ 1

2 θ′
∂β̂m

∂θm

]
−
(
θc − θ

) [ 1
2 S′

∂α̂m

∂Sm
+ 1

2 θ′
∂α̂m

∂θm

] }

+O
(

∆3, ε2
)

. (13)

Here we use shorthand notation for the Eulerian-mean salinity and potential temperature at
constant height,

S(z0) ≡ S(z0, t), θ(z0) ≡ θ(z0, t), (14)

and for the haline contraction and thermal expansion coefficients evaluated as functions of
Eulerian-mean properties,

β̂m ≡ β
(
Sm, θm, zm

)
, α̂m ≡ α

(
Sm, θm, zm

)
. (15)

Equation (13) approximately relates the Neutral Surface height fluctuations to Eulerian fluctuations of
S and θ, in analogy with (5). By excluding terms from (13), ST15 derived lower-order approximations
to z′0, referred to as the “NDTRM1”,

z′NDTRM1 = − S′ β̂m − θ′ α̂m

Sz β̂m − θz α̂m
+O

(
∆3, ε2, ε∆̃

)
, (16)

and “NDTRM0”

z′NDTRM0 = − S′ β̂− θ′ α̂

Sz β̂− θz α̂
+O

(
∆3, ∆̃2, ε2, ε∆̃

)
, (17)

where we define
β̂ ≡ β

(
S, θ, z0

)
, α̂ ≡ α

(
S, θ, z0

)
, (18)

in analogy with (15). For brevity we omit complete expressions for the NDTRM streamfunctions,
derived by substituting (13)–(17) into (2), and a discussion of the evaluation of the “cast” terms Sc and
θc; we refer the reader to ST15 for information on such specifics of the NDTRM.

These expressions differ from those given by ST15 via the introduction of an additional small
parameter, ∆̃, that measures deviations of the Eulerian mean properties, S and θ, from the cast
properties, Sc and θc. Thus, conceptually, the three small parameters in (13)–(17) are related via
∆ ∼ ∆̃ + ε.

3. Approximating Volume Fluxes within Local Neutral Surfaces

The Neutral Density variable of [24] (γJM97) was formulated with the aim of obtaining
a density-like variable whose surfaces lie as parallel as possible to the local neutral tangent plane
everywhere in the ocean. However, due to the ocean’s equation of state, is not possible to construct such
a variable exactly [29,30]. Thus in general the vertical fluctuations of Neutral Density surfaces differ
from from fluctuations of local Neutral Surfaces [34]. In Section 1 we posited that local Neutral Surfaces
are best suited to estimating semi-Lagrangian mean transport, and therefore also to formulating
the TRM, because adiabatic flows are constrained to follow these surfaces. The validity of these
assumptions is discussed further in Section 5.
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In this section we aim to formulate a TRM that approximates fluxes along local Neutral Surfaces
as closely as possible (the NTRM). We first derive an approximation to the vertical fluctuations
of local Neutral Surfaces, denoted z′NS, for comparison with the NDTRM approximations to z′0
given in Section 2. This approximation alone yields an incomplete TRM because the resulting
streamfunction (2) is not associated with a globally-defined set of surfaces (i.e., γ). To circumvent
this issue we consider a Neutral Density variable γmean whose reference dataset (i.e., Sc, θc and pc) is
chosen to be the local Eulerian-mean thermodynamic properties (i.e., S, θ and z). For such a Neutral
Density variable the NDTRM reduces to the NTRM, up to the same asymptotic order in ε, which
implies that the NTRM does in fact advect a globally-defined density variable, γmean. We also show
that the NTRM coincides with a TRM derived based on fluctuations of surfaces of locally-referenced
potential density, up to the same asymptotic order in ε.

3.1. Vertical Fluctuations of Local Neutral Surfaces

Consider a local Neutral Surface with instantaneous height z = z0(t) at a fixed horizontal location
(x0, y0). To simplify our presentation we will drop all dependence on horizontal location in what
follows. We define the time-evolution of z0(t) via the semi-Lagrangian neutral relationship [26],

β δS(z0(t), t)− α δθ(z0(t), t) = 0, (19)

where δS and δθ denote infinitesimal changes in the salinity and potential temperature on the surface.
Both β and α are themselves evaluated at the local salinity S(z0(t), t), potential temperature θ(z0(t), t)
and pressure p(z0(t), t). Dividing by an infinitesimal unit of time δt, Equation (19) may be expanded
to describe the time evolution of z0,[

β
∂S
∂z

(z0, t)− α
∂θ

∂z
(z0, t)

]
dz0

dt
= −

[
β

∂S
∂t

(z0, t)− α
∂θ

∂t
(z0, t)

]
. (20)

We now use (20) to derive a relationship between the Neutral Surface height fluctuations z′0 =

z0(t)− z0 and the Eulerian fluctuations of S and θ. Note that fluctuations of S and θ may not only
be associated with vertical heaving of Neutral Surfaces; they may also result from lateral stirring
of property gradients along Neutral Surfaces. To simplify the presentation we assume that the
magnitudes of both vertical heaving-induced and lateral stirring-induced property fluctuations are
small and characterized by the same small parameter ε. A caveat to this assumption is that even
outside of the ocean’s surface and bottom boundary layers there may be a non-negligible influence of
surface buoyancy fluxes [35]. For further discussion of these points and a rationalization of the small
parameter ε, the reader is referred to ST15.

By posing Taylor expansions of β and α as e.g.,

β (S(z0(t), t), θ(z0(t), t), z0(t)) = β
(
S(z0), θ(z0), z0

)
+O(ε) = β̂ +O(ε), (21)

we can approximate (20) as[
β̂

∂S
∂z

(z0, t)− α̂
∂θ

∂z
(z0, t)

]
dz′0
dt

= −
[

β̂
∂S′

∂t
(z0, t)− α̂

∂θ′

∂t
(z0, t)

]
+O

(
ε2
)

. (22)

Finally, integrating (22) with respect to t yields an expression for the local Neutral Surface height
fluctuation, which we denote as z′NS, in terms of S′ and θ′,(

β̂
∂S
∂z0
− α̂

∂θ

∂z0

)
z′NS = −

(
β̂ S′ − α̂ θ′

)
+O

(
ε2
)

. (23)
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Note that the constant of integration vanishes between (22) and (23) because by definition, z′0 = S′ =
θ′ = 0. Substituting (23) into (2)–(4) yields the following expression for the NTRM streamfunction,

Ψ(x0, y0, z0) =
∫ 0

z0
u dz + β̂ u′S′−α̂ u′θ′

β̂ ∂z0 S−α̂ ∂z0 θ
− 1

2
uz(z0)

(β̂ ∂z0 S−α̂ ∂z0 θ)
2

(
β̂ 2S′2 − 2β̂α̂S′θ′ + α̂2θ′2

)
+O

(
ε3) . (24)

Note that in applying (24) we are free to select z0, for example to coincide with a model vertical grid
level. Equation (23) then approximates the vertical fluctuations of a local Neutral Surface z0(t) whose
mean elevation is z0, and (24) approximates the transport above z = z0.

3.2. Connection to the Neutral Density Temporal Residual Mean (NDTRM)

While the NTRM streamfunction (24) approximates the semi-Lagrangian mean transport,
in isolation it does not quantify isopycnal/diapycnal fluxes because we have not yet associated
it with a globally-defined set of surfaces (i.e., γ). It therefore does not advect a density variable, and
the fluxes cannot be partitioned into adiabatic and diabatic components (e.g., [22]). We therefore
now consider whether the NDTRM, which is associated with a globally-defined density variable (e.g.,
γJM97), can be adapted to more closely approximate the fluxes within local Neutral Surfaces.

We first note that there is a close similarity between our equations for the vertical fluctuations
of local Neutral Surfaces, (23), and the vertical fluctuations of Neutral Density surfaces, (13)–(17).
Indeed, (23) is identical to the lowest-order form of the NDTRM, the NDTRM0 (17), except for the
differing asymptotic order of the error terms,

z′NDTRM0 = z′NS +O
(

∆3, ∆̃2, ε∆̃, ε2
)

. (25)

In other words, there areO(∆3),O(∆̃2) andO(ε∆̃) terms that appear explicitly on the right-hand sides
of (13) and (16), and these terms allow z′NDTRM2 and z′NDTRM1 to more closely approximate Neutral
Density surface fluctuations than z′NDTRM0. However, by treating theseO(∆3),O(∆̃2) andO(ε∆̃) terms
as error terms in (17) we actually obtain a closer approximation of local Neutral Surface fluctuations
(i.e., of (23)).

Motivated by this observation, we now seek a hypothetical Neutral Density variable that
eliminates the O(∆2), O(∆̃2) and O(ε∆̃) terms in the NDTRM. This is achieved by constructing
a Neutral Density variable, referred to as γmean, using the Eulerian-mean thermodynamic properties
in place of the reference dataset,

(Sc(γ), θc(γ), zc(γ))→
(

S(zr(γ)), θ(zr(γ)), zr(γ)
)

. (26)

Here we have implicitly assumed that the local water column has been pre-labeled with γ based on
the Eulerian-mean thermodynamic properties, and the reference elevation zr(γ) is the elevation in this
water column that has been labeled with Neutral Density γ. The isopycnal fluctuation z = z0(t) is
therefore defined by the discrete neutral relation (7) in the form(

S(zr(γ))− S(z0(t), t))
)

βm −
(
θ(zr(γ))− θ(z0(t), t)

)
αm = O(∆3). (27)

Here βm and αm are defined as in (8), but with the thermodynamic mid-point defined as

Sm(z0(t), t, γ) ≡
[
S(z0(t), t) + S(zr(γ))

]
/2, (28)

θm(z0(t), t, γ) ≡
[
θ(z0(t), t) + θ(zr(γ))

]
/2, (29)

zm(t, γ) ≡ (z0(t) + zr(γ))/2. (30)

Note that the transformation defined by (26) and (28)–(30) does not immediately eliminate
the O(∆2), O(∆̃2) and O(ε∆̃) terms in the NDTRM formulae (13), (16) and (17). Instead, this
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transformation implies a modified interpretation of ∆ and ∆̃. We now define ∆̃ as a measure of
the difference between the mean isopycnal elevation z0 and the mean mid-point elevation zm, or
equivalently between z0 and zr, compared to a dynamical scale height H, for example the ocean depth.
Via Taylor expansions of S(z0) and θ(z0), e.g.,

S(z0) = S(zr) + (z0 − zr)
∂S
∂z0

(zr) +O
(

∆̃2
)

(31)

it follows that ∆̃ also measures deviations of S and θ from Sm and θm, or equivalently from S(zr(γ))

and θ(zr(γ)). It then follows from (12) that again ∆ ∼ ∆̃ + ε, where ∆ measures differences between
(S(z0(t), t), θ(z0(t), t), z0(t)) and (Sm(z0(t), t, γ), θm(z0(t), t, γ), zm(t, γ)).

We have now established that the transformation described by (26) and (28)–(30) leaves the
NDTRM formulae (13), (16) and (17) largely unchanged, but modifies the interpretation of the O(∆2),
O(∆̃2) and O(ε∆̃) error terms. To approach the NTRM, we now demonstrate that

∆̃ ∼ ε. (32)

This implies that the difference (∆) between the “parcel” properties on the heaving Neutral Density
surface and the properties of the reference “cast” (consisting of the Eulerian-mean thermodynamic
properties) necessarily scales with the amplitude (ε) of the isopycnal height fluctuations in the limit
ε → 0. To derive (32), we first note that the reference elevation must approach z0 in the limit of
vanishingly small ε, i.e., zr(γ) → z0 as ε → 0, because in this limit z0(t) → z0, and the (stationary)
isopycnal must satisfy the neutral relation with itself. We therefore write zr = z0 + δzr, where
δzr = O(∆̃) by definition, and seek a relationship between δzr and ε by posing a Taylor expansion
of (27) in terms of ε and ∆̃. First, we note that the midpoint thermodynamic properties can be written as

Sm = S +O(ε, ∆̃), θm = θ +O(ε, ∆̃), zm = z0 +O(ε, ∆̃), (33)

where we have moved all terms in S′, θ′ and z′0 into the error terms on the right-hand sides of these
equations. We can write βm and αm as

βm = β̂ +O(ε, ∆̃), αm = α̂ +O(ε, ∆̃), (34)

where β̂ and α̂ are defined as in (18). Substituting (33) and (34) into (27), Taylor expanding S(zr(γ))

and θ(zr(γ)) in terms of δzr, and Taylor expanding S(z0(t), t) and θ(z0(t), t) as in (12), we obtain

δzr

(
β̂

∂S
∂z0
− α̂

∂θ

∂z0

)
= O

(
∆3, ε, ε∆̃, ∆̃2

)
. (35)

Noting again that the left-hand side of (35) is O(∆̃) by definition, we conclude that δzr = O(ε) and
that (32) holds.

Finally, we combine the transformation defined by (26) and (28)–(30) with the asymptotic
relationships (33), (34) and (32) to obtain the following transformation of the variables in (13), (16)
and (17):

∆→ ε, ∆̃→ ε, (36a)

α̂m → α̂ +O(ε), β̂m → β̂ +O(ε), (36b)

Sc → S +O(ε), θc → θ +O(ε), (36c)

Sm → S +O(ε), θm → θ +O(ε), zm → z0 +O(ε). (36d)
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Substituting (26)–(36c) into (13)–(17), we find that all forms of the NDTRM collapse to the NTRM, to a
consistent asymptotic order in ε,

z′NDTRM2 = z′NS +O
(

ε2
)

, (37)

z′NDTRM1 = z′NS +O
(

ε2
)

, (38)

z′NDTRM0 = z′NS +O
(

ε2
)

. (39)

This implies that, to a consistent order in ε, the NTRM advects a Neutral Density variable γmean

constructed via the discrete neutral relation (7), using the Eulerian-mean thermodynamic properties
(S, θ, z0) as the reference dataset.

3.3. Equivalence to Fluctuations of Locally-Referenced Potential Density Surfaces

We now show that our Equation (23) for the vertical fluctuations of Neutral Surfaces also coincides
with the fluctuations of surfaces of locally-referenced potential density, to the same order of accuracy
in ε. Ref. [36] used a TRM based on locally-referenced potential density fluctuations, but did not
demonstrate its equivalence to fluctuations of local Neutral Surfaces.

We define locally-referenced potential density σz0 as the density referenced to the mean height z0,

σz0(z0(t), t)
de f
= ρ (S(z0(t), t), θ(z0(t), t), z0) . (40)

Here ρ is the in situ density and z0(t) is the instantaneous height of the σz0 surface whose mean depth
is z0. Below we identify this σz0 surface to a consistent order of asymptotic approximation in the
amplitude of the surface height fluctuation, ε.

Posing Taylor expansions of S and θ following (12), we may expand (40) as

σz0(z0(t), t) = ρ
(
S(z0), θ(z0), z0

) [
1 +

(
S′(z0, t) + z′0(t)

∂S
∂z

(z0, t)

)
β
(
S(z0), θ(z0), z0

)
−
(

θ′(z0, t) + z′0(t)
∂θ

∂z
(z0, t)

)
α
(
S(z0), θ(z0), z0

)]
+O

(
ε2
)

. (41)

Taking the mean of (41) yields an expression for the semi-Lagrangian-mean locally-referenced
potential density

σz0(z0(t), t) = ρ
(
S(z0), θ(z0), z0

)
+O

(
ε2
)

. (42)

As z0 is defined by a surface of constant locally-referenced potential density, it follows that

σz0(z0(t), t) ≡ σz0(z0(t), t). (43)

Substituting (43) and (42) into (41) eliminates the first two terms in (41) to a consistent order of
approximation in ε, and thus (41) reduces to

z′LRPD = z′NS +O
(

ε2
)

, (44)

where z′LRPD denotes vertical fluctuations of the locally-referenced potential density surface. Therefore,
to the same asymptotic order of approximation in ε, the NTRM estimate of isopycnal height fluctuations
also coincides with vertical fluctuations of locally-referenced potential density surfaces.
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4. Comparison and Assessment Using an Idealized Numerical Model

The key result of Section 3 is that the NTRM streamfunction (24) approximates volume fluxes
within local Neutral Surfaces, and advects a Neutral Density variable defined using the Eulerian-mean
thermodynamic properties (S, θ, z0) as a reference dataset. An implication of this result is that while
the NDTRM should more accurately approximate volume fluxes within surfaces of γJM97, the NTRM
should more accurately approximate volume fluxes within surfaces of γmean. We now test this
prediction using output from an idealized numerical model of the Antarctic continental shelf and
slope. We use this model because its geometry simplifies the task of computing γmean, and because
nonlinearities in the seawater equation of state lead to relatively pronounced deviations of potential
density and Neutral Density surfaces in the simulated region [23,37,38].

4.1. Model Configuration

The modeling approach has been described in detail by [23,39–42], so here we present only salient
aspects of its configuration and refer the reader to previously published articles. The MIT general
circulation model [43,44] was configured in a zonally re-entrant channel of length Lx = 400 km and
widh Ly = 450 km, with its depth ranging from 500 m over the continental shelf at the southern
boundary to 3000 m at the northern boundary. The model was forced via a combination of a steady
westward surface wind stress, linear drag at the sea floor, a two-equation representation of surface
sea ice heat and salt exchanges (see [42]), a constant input of salt over the southernmost 50 km of the
model domain, and restoring toward profiles of θ and S derived from hydrography within a sponge
layer covering the northernmost 50 km of the domain. The model’s horizontal grid spacing is around
1 km, sufficient to resolve the eddy field [41], and the vertical grid consists of 53 vertical levels with
spacings increasing from around 13 m at the surface to around 100 m at the sea floor. The analysis
conducted here uses 5 years of daily model snapshots from a period in which the simulation had
reached statistically steady state.

4.2. Constructing Neutral Density from the Model’s Mean State

To test the NTRM we must first construct γmean, i.e., for each time tn and model grid location
(xi, yj, zk) we must assign Neutral Densities γmean(xi, yj, zk, tn), where i = 1 . . . Nx, j = 1 . . . Ny,
k = 1 . . . Nz, and n = 1 . . . Nt are gridpoint indices. Similar to the procedure laid out by [24], we
require a dataset to which the instantaneous model stratification can be referred in order to assign
a γmean value to each grid point. In [24], this dataset was the hydrographic climatology of [45] and
a corresponding set of neutral density labels on a coarse global grid. Similarly, for the purpose of
constructing γmean the reference dataset is the model’s time-mean hydrography, S(yj, zk) and θ(yj, zk)

(see Figure 1a,b), and a corresponding set of neutral density labels γmean
ref (yj, zk). Note that the reference

dataset is approximately independent of x due to the zonally symmetric model geometry and forcing.
The approximate two-dimensionality of the time-mean hydrography also implies that the neutral
helicity of the reference dataset is zero [29]. Taken together with the simply connected model domain,
this implies that Neutral Surfaces are well defined [46].

We now outline the procedure for labeling the reference dataset with γmean
ref and assigning γmean

values to instantaneous model output. This procedure closely follows that described by [24], to which
the reader is referred for more specific details of the algorithm. We first labeled the northernmost
model water column, γmean

ref (yNy , zk), by setting it equal to γJM97(yNy , zk). Here γJM97 was calculated
from the hydrographic measurements used to restore the model stratification in the offshore sponge
layer, taking the model domain to lie along a slice between (61W,67S) at y = 0 and (50.6W,67S) at
y = 450 km [23]. We then iterated southward through the model water columns, assigning the jth

column,
{

γmean
ref (yj, zk) | k = 1 . . . Nz

}
, from the (j + 1)th column using the form of the discrete neutral

relation (7) given by [24] and linear vertical interpolation. For grid points in the jth column that
were denser or lighter than any grid point in the (j + 1)th water column, we linearly extrapolated
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γmean
ref (yj, zk) vertically. Note that in our vertical density extrapolation we assigned the vertical gradient

of γmean
ref to be equal to the vertical gradient of locally-referenced potential density, whereas in this

region the vertical gradient of γJM97 was typically assigned to be twice the vertical gradient of
locally-referenced potential density (the “b-factor” of [24]). This choice of extrapolation was made for
simplicity and should not influence our results, though a consequence is that γmean spans a smaller
range of density values than γJM97 in this model domain.

Figure 1. Diagnostics of the mean model state, where averages are taken in time (over 5 years of
daily snapshots) and in the along-slope (zonal) direction (400 km distance at ∼1 km horizontal grid
spacing. (a) Potential temperature θ, (b) practical salinity S, (c) Neutral Density constructed based on
the model’s mean state, which we denote as γmean (see Section 4), (d) difference between γJM97, where
γJM97 is the Neutral Density calculated using the reference dataset and algorithm of [24], and γmean.

To calculate γmean(xi, yj, zk, tn) for a given model gridpoint with salinity S(xi, yj, zk, tn)

and potential temperature θ(xi, yj, zk, tn), we construct continuous functions of z, S(yj, z) and
θ(yj, z), via linear interpolation. We then find a depth zr such that (S(yj, zr), θ(yj, zr), zr)

and (S(xi, yj, zk, tn), θ(xi, yj, zk, tn), zk) satisfy the discrete neutral relation. We then assigned
γmean(xi, yj, zk, tn) by linear vertical interpolation of γmean

ref (yj, zk) to the point zref. Note that our
algorithm for assigning γmean differs slightly from the algorithm of [24] for assigning γJM97: to assign
γmean we refer each gridpoint to a horizontally local “cast” consisting of the Eulerian-mean model
properties, whereas the algorithm of [24] refers each gridpoint to a four geographically local reference
casts. Additionally, we use linear vertical interpolation to assign a γJM97 value, whereas the algorithm
of [24] uses quadratic interpolation.

In Figure 1a,b we plot the time- and zonal-mean potential temperature and salinity, θ and S, that
serve as the reference dataset in the construction of γmean. The mean state is qualitatively similar
to hydrographic measurements from the western Weddell Sea [41], and exhibits a layer of relatively
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cold, fresh, shelf-sourced bottom water that descends down the continental slope. Figure 1c shows
the time and zonal mean of the Neutral Density constructed from the model’s mean state, i.e., γmean,
while Figure 1d shows the difference between γJM97 and γmean. As expected, γJM97 takes lower values
than γmean in waters lighter than the lightest water at the northern boundary, and higher values than
γmean in waters denser than the densest water at the northern boundary, due to the procedure for
extrapolating γmean

ref . Some variations are visible across the continental slope due to the presence
of alternating along-slope jets that slowly drift offshore, and which do not perfectly cancel under
integration over the 5-year analysis period [42].

We anticipate that γmean should be more closely aligned with local Neutral Surfaces than γJM97.
To illustrate this, in Figure 2 we plot the γmean, γJM97, θ and S at the sea floor as a function of cross-slope
distance, i.e., within the dense outflowing layer of shelf-sourced bottom water. Figure 2 shows that
γJM97 exhibits spurious fluctuations and local minima, on the order of 0.01 kg m−3, that are absent in
γmean. For example, around y = 200 km there are negligible variations in θ and S, indicating that the
sea floor should coincide with a neutral surface. This is reflected in γmean, but not in γJM97, which
exhibits a spurious local minimum at this point. We conclude that iso-surfaces of γmean are more
closely aligned with local Neutral Surfaces than γJM97, though the spurious variations in γJM97 are
nonetheless quite small compared to the domain-scale ranges of γmean and γJM97.

Figure 2. Time-/alongshore-mean (a) γmean, (b) γJM97, (c) salinity and (d) potential temperature in the
bottom-most model grid point, i.e., in the layer of dense water that descends down the continental
slope [42], as a function of distance from the shore. This plot illustrates that the use of an independent
reference dataset leads to a spurious local minima, e.g., around y = 200 km, in γJM97. These are
absent in γmean, indicating that it more closely tracks Neutral Surfaces. The rapid density variations
around y = 100 km are due to “steps” in the model’s geopotential-coordinate representation of the
continental slope.
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4.3. Comparing Diagnosed and TRM Transports

Having constructed γmean, we now compare the transports within γmean and γJM97 surfaces, as
estimated by the TRM and diagnosed directly from the model simulations. Based on Section 3, we
anticipate that the NTRM should more closely approximate the diagnosed fluxes within γmean surfaces,
while the NDTRM should more closely approximate the diagnosed fluxes within γJM97 surfaces.

We diagnose fluxes within density surfaces via direct calculation of (1). The procedure is
summarized here to achieve a self-contained presentation; for further details the reader is referred to
ST15. For each model snapshot, the model-reported meridional volume fluxes and Neutral Density
(γmean or γJM97) on geopotential surfaces are interpolated to a vertical grid that is 10 times finer than
the model’s vertical grid (see [23,41,42]). The volume fluxes are then assigned to a discrete set of
density bins, averaged in time to compute mean volume fluxes within density surfaces, and integrated
vertically in density space to obtain the streamfunction. To map the streamfunction back to z-space,
we also average the height z0 of each density surface, and map the streamfunction at density γ0 to
height z0. This allows for direct comparison with the TRM, which approximates the transport above
the isopycnal whose mean elevation is z0. Note that due to the zonal symmetry of the model domain,
we only calculate the meridional component of the streamfunction, which quantifies circulation in the
y/z plane. We denote the streamfunction corresponding to volume fluxes in γmean surfaces as ψmean,
and the streamfunction corresponding to volume fluxes in γJM97 surfaces as ψJM97.

We compare ψmean and ψJM97 with the NTRM and NDTRM estimates of the volume fluxes.
The NTRM is evaluated as the meridional component of (24), with the mean operator defined as a time
and zonal average. We denote the resulting streamfunction as ψNTRM. The NDTRM streamfunction
is defined following equation (B.4) of ST15, and is denoted as ψNDTRM. Throughout this section we
use “NDTRM” to refer to the NDTRM2 of ST15, which was shown to exhibit closer agreement with
diagnosed fluxes in γJM97 surfaces than lower-order formulations of the NDTRM.

In Figure 3 we compare ψmean and ψJM97, ψNTRM and ψNDTRM directly. Figure 3a shows the
overturning circulation diagnosed from volume fluxes within γmean surfaces. The circulation is
characterized by wind-driven shoreward transport within the surface mixed layer and shoreward
interior eddy transport across the continental slope [42]. These shoreward transports are returned
offshore via dense shelf water export down the continental slope. Figure 3 quantifies the difference in
the computed transports within γmean and γJM97 surfaces. The most substantial difference is that the
amplitude of ψJM97 is enhanced relative to ψmean over the upper continental slope and the continental
shelf, exceeding the ∼0.23 Sv shelf overturning magnitude of ψmean by around 0.08 Sv. This suggests
that a non-negligible fraction of the diagnosed shelf overturning in ψJM97 surfaces is due to errors
introduced by the independent reference dataset of [24]. Figure 3c,d show the differences between
ψmean and ψNTRM, and between ψJM97 and ψNDTRM, respectively. Both TRM streamfunctions somewhat
underestimate the amplitude of the overturning circulation over the continental shelf, and also exhibit
errors close to the ocean surface and floor, where the vertical stratification is weak. The latter might
be ameliorated by adopting a generalized form of the NTRM that utilizes vertical tracer fluxes in
weakly-stratified regions, analogous to the methods proposed by [47,48]. The errors are typically
smaller than 0.05 Sv in magnitude, which is smaller than the difference between ψmean and ψJM97 over
the shelf, suggesting that ψNTRM more closely approximates ψmean and that ψNDTRM more closely
approximates ψJM97.
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Figure 3. Comparison of transports calculated via TRM approximations vs. diagnosed directly from
model output by averaging within density surfaces. Transports are quantified via streamfunctions with
blue colors corresponding to counter-clockwise circulation and black contours shown at intervals of
(a) 0.025 Sv and (b–d) 0.01 Sv. (a) Diagnosed transport within γmean surfaces (ψmean), (b) difference
between diagnosed transports within γJM97 surfaces and γmean surfaces (ψmean − ψJM97), (c) difference
between NTRM-estimated transport within γmean surfaces and diagnosed transport within γmean

surfaces (ψNTRM − ψmean), (d) difference between NDTRM-estimated transport within γn surfaces and
diagnosed transports within γJM97 surfaces (ψJM97 − ψNDTRM). The diagnosed streamfunctions, ψmean

and ψJM97, have been mapped from density to z coordinates using the time-mean depths of γmean and
γJM97 surfaces, respectively.

To quantify the agreement between the TRM and diagnosed transports, in Figure 4a we compare
the net southward transport reported by each streamfunction, as a function of latitude. This calculation
follows ST15, and only includes southward transport at any given latitude if that transport has been
supplied from the northern boundary of the domain, i.e., only counting streamlines that connect that
latitude to the northern boundary. Figure 4b shows a similar comparison, but only accounting for
southward interior transport, i.e., excluding transport in the surface mixed layer. In each case, ψNTRM

and ψNDTRM more closely tracks ψmean and ψJM97, respectively, over the continental slope (y . 150 km).
Over the continental slope (150 km . y . 250 km) the transports are difficult to distinguish, as
suggested by Figure 3. In the deep ocean (y & 250 km) the TRM and diagnosed transports diverge
due to large differences in the streamfunctions close to the sea floor (see Figure 3c,d). Thus, our
net southward transport metrics confirm the result suggested by the overturning streamfunction
comparison in Figure 3: the NTRM more closely approximates volume fluxes in ψmean surfaces, while
the NDTRM more closely approximates fluxes in ψJM97 surfaces.
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Figure 4. Comparison of total thickness-weighted average cross-slope transports calculated via TRM
approximations vs. diagnosed directly from model output. (a) Total southward transport, (b) total
interior southward transport, i.e., excluding wind-driven Ekman transport of surface waters (see
Section 4 and [23]).

4.4. Advective Tracer Transport

Finally, we note that that in addition to estimating isopycnal/diapycnal transports, TRM
streamfunctions may also be used to estimate the advective flux of tracers. Importantly, no
globally-defined density variable is needed to perform such an estimate, so, e.g., it would not be
necessary to construct a Neutral Density variable like γmean in conjunction with the NTRM for this
purpose. We now compare the advective meridional fluxes of θ and S estimated by the NTRM and
NDTRM with those diagnosed from the model simulation. We focus on the continental shelf and open
ocean regions (y & 150 km), in which the heat and salt transports have been shown to be primarily
advective, rather than diffusive [42].

Figure 5a,b shows the northward eddy fluxes of heat and salt, diagnosed directly from the daily
model output via

Fχ
eddy = Lx

∫ 0

−h
v′χ′dz. (45)

Here χ = θ or χ = S, z = −h(y) is the sea floor elevation, the mean operator • denotes a time and
zonal average, and primes ′ denote deviations from that average. The heat and salt fluxes have been
rescaled to take units of TW and Gg/ s, respectively, for ease of interpretation. We calculate NTRM
and NDTRM estimates of the advective fluxes via

Fχ
TRM = −Lx

∫ 0

−h

∂ψTRM

∂z
χ dz. (46)

Here we set ψTRM = ψNTRM and ψTRM = ψNDTRM to define the flux estimates Fχ
NTRM and Fχ

NDTRM,
respectively. In Figure 5c,d we plot the differences between the diagnosed and TRM-estimated heat
and salt fluxes, which typically differ by around 10–20%. There is very little difference between the
NTRM and NDTRM salt fluxes, whereas the NTRM yields errors in the heat flux that are up to 40%
smaller than the errors incurred by using the NDTRM.
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Figure 5. Comparison between cross-slope heat and salt fluxes diagnosed directly from the model
output vs. estimated using TRM streamfunctions (see Section 4). Fluxes are plotted over a subset
of the model domain in which the eddy transport was found to be primarily advective, rather than
diffusive [42]. (a,b) Diagnosed offshore heat and salt fluxes, respectively. (c,d) Differences between
diagnosed and NTRM-/NDTRM-estimated offshore heat and salt fluxes, respectively.

5. Summary and Conclusions

The Temporal Residual Mean (TRM) transport requires an Eulerian approximation for vertical
fluctuations of a set of quasi-material surfaces (e.g., [20–22]). The TRM approximates the transport
within these surfaces, which in turn approximates the semi-Lagrangian mean and Lagrangian-mean
transports [9]. This article builds on a recent study by [23] (hereafter ST15), who used the Neutral
Density variable γJM97 of [24] to construct a Neutral Density TRM (NDTRM) that can be applied
anywhere in the ocean, circumventing the limitations of e.g., potential density at high latitudes. A key
result of this article is that the vertical fluctuations of local Neutral Surfaces, which are defined directly
via the continuous form of the neutral relation, can be approximated via (23). The corresponding
TRM streamfunction (24), referred to as the “Neutral TRM” (NTRM) should more closely approximate
the semi-Lagrangian mean transport than the NDTRM, and therefore also better approximate the
generalized Lagrangian mean transport [9]. The NTRM also coincides with a TRM based on vertical
fluctuations of locally-referenced potential density surfaces, again to the same asymptotic order in the
amplitude of the isopycnal height fluctuations.

In isolation the NTRM streamfunction does not directly quantify isopycnal and diapycnal ocean
transports (see e.g., [31]) because local Neutral Surfaces are, by definition, not globally well-defined.
However, in Section 3 we showed for the special case of a Neutral Density variable (γmean) constructed
using the Eulerian-mean ocean state, the NDTRM reduces to the NTRM, up to the same asymptotic
order in the amplitude of the isopycnal height fluctuations. Thus the NTRM approximately quantifies
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adiabatic and diabatic volume fluxes within and across γmean surfaces, again up to a consistent
asymptotic order in the amplitude of the isopycnal height fluctuations.

In Section 4 we tested this theoretical prediction explicitly using an idealized eddy-resolving
simulation of the Antarctic continental shelf and slope. Using the model’s time-mean state as a reference
dataset for γmean, we labeled the model output with both γmean and γJM97 and computed volume
fluxes within surfaces of both Neutral Density variables. We showed that γmean iso-surfaces were more
closely aligned with local Neutral Surfaces than γJM97, indicating that fluxes within γmean surfaces
should be more closely aligned with the local neutral tangent plane. Consistent with Section 3, we
found that the NTRM more closely approximated volume fluxes within γmean surfaces, while the
NDTRM more closely approximated volume fluxes within γJM97 surfaces. Finally, we compared the
advective fluxes of heat and salt estimated by the NTRM and NDTRM, with those diagnosed from the
model. Both formulations of the TRM yielded flux estimates in close agreement with the diagnosed
fluxes, though the NTRM yielded a somewhat closer approximation to the heat fluxes.

The results summarized above suggest that for most oceanographic purposes, the NTRM is
preferable to the NDTRM for the purposes of estimating isopycnal and diapycnal volume fluxes, and
of estimating advective tracer fluxes. It also bears the advantage of being more convenient to compute
than the NDTRM, as it makes no explicit reference to globally-defined Neutral Density variable or to the
set of reference casts used to defined such a variable. A practical consideration is that the NTRM advects
a Neutral Density variable constructed from the model’s time-mean state, i.e., γmean [22]. Though
algorithms for constructing global, approximately neutral density variables have been proposed
(e.g., [24,49,50]), translating these algorithms to the time-mean state of a three-dimensional model with
an arbitrary ocean geometry is non-trivial. More recent algorithms have been proposed to construct
global, approximately neutral surfaces [46,51], but have not yet been adapted to the construction of
three-dimensional Neutral Density variables. Furthermore, a Neutral Density variable such as γmean

would need to be constructed with great care to achieve consistency with γJM97, which has been used
to map the global overturning circulation [5,25].

Throughout this manuscript we have assumed that local Neutral Surfaces coincide with purely
adiabatic flows [26], and are therefore optimal for the construction of the TRM. Neutral helicity
precludes the construction of a continuous density variable that lies exactly parallel to these surfaces
everywhere in the ocean [29]. However, on the basis of two-parcel energetic considerations, Ref. [52]
argued that that adiabatic parcel displacements should not, in fact, follow the neutral tangent plane.
Variance of potential temperature and salinity has been found to be larger on Neutral Density surfaces
than on surfaces of potential density referenced to 2000 decibars [26,53], though this does not explicitly
contradict the notion that adiabatic parcel displacements follow neutral surfaces. Although this topic
remains under debate [54–56], an implication is that there may yet be a more accurate choice than
local Neutral Surfaces to define adiabatic heaving, and therefore to approximate the semi-Lagrangian
mean and generalized Lagrangian mean transports. Further work is required to compare estimates of
thickness-weighted average transports within different formulations of quasi-neutral surfaces, such as
ω-surfaces [51], thermodynamic neutral density (γT) surfaces [50], and orthobaric density surfaces [49].

Previous studies have used the NTRM0, and thus implicitly the NTRM (see Section 3), to estimate
volume fluxes within γJM97 surfaces (e.g., [42,57–59]). In principle, this incurs an O(∆̃) error in the
approximation, where ∆̃ quantifies differences between the model’s mean state and the independent
reference dataset. On the other hand, our comparison in Section 4 shows that the NTRM approximates
transports within γJM97 surfaces almost as closely as it approximates transports within γmean surfaces,
so in practice such errors may not be of concern. However, further work is required to evaluate errors
associated with neutral helicity when quantifying transports within γmean surfaces using the NTRM.
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