Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = desert foot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2167 KiB  
Article
Growth Ring and Its Climatic Signal on Shrub Species of the Semi-Desert Area in the Northern Foot of Yinshan Mountain, Inner Mongolia, China
by Zhenyu Yao, Zongshan Li, Shaoteng Chen, Jianying Guo and Yihe Lv
Forests 2025, 16(2), 379; https://doi.org/10.3390/f16020379 - 19 Feb 2025
Viewed by 635
Abstract
Desert and semi-desert ecosystems cover a large proportion of global land area, but their tree-ring materials had traditionally been studied less intensively than that of forest ecosystems. In this study, we presented the time series of growth rings from eight typical shrub species [...] Read more.
Desert and semi-desert ecosystems cover a large proportion of global land area, but their tree-ring materials had traditionally been studied less intensively than that of forest ecosystems. In this study, we presented the time series of growth rings from eight typical shrub species of the semi-desert region in the northern foot of Yinshan Mountain, Inner Mongolia, China. The results showed that all those shrub species had recognizably demarcated annual rings of main stems, and tree-ring chronologies could been constructed successfully. The climate-growth analysis indicated that the chronologies was positively correlated with precipitation and PDSI but negatively correlated with temperature variables, indicating that drought stress had primary importance in the control of the relative ring width from year to year for those shrub species. Interestingly, the annual growth rate of those shrub species had no noticeable downward trend in recent decades, indicating that shrub growth had not negatively impacted the recently developed warm–dry climate in the sample sites. Our results provide evidence that growth rings in the main stems of shrub species in the northern foot of Yinshan Mountain should be a reliable proxy of annual fluctuation in the semi-desert environment of China. Full article
Show Figures

Figure 1

14 pages, 9594 KiB  
Article
Aeolian Sand Sorting and Soil Moisture in Arid Namibian Fairy Circles
by Hezi Yizhaq, Constantin Rein, Lior Saban, Noa Cohen, Klaus Kroy and Itzhak Katra
Land 2024, 13(2), 197; https://doi.org/10.3390/land13020197 - 6 Feb 2024
Cited by 3 | Viewed by 1767
Abstract
We studied fairy circles 20 km west of Sesriem at one of the driest locations of fairy circles in Namibia, at the foot of the popular Sossusvlei dunes. These fairy circles lack the typical hexagonal order of the Namibian fairy circles. After years [...] Read more.
We studied fairy circles 20 km west of Sesriem at one of the driest locations of fairy circles in Namibia, at the foot of the popular Sossusvlei dunes. These fairy circles lack the typical hexagonal order of the Namibian fairy circles. After years of drought, their pattern is more similar to that of vegetation rings, due to the sparse vegetation in the area between the circles. Cross-section measurements of the soil water content (SWC) show that the upper layer (12 cm) is very dry (~1%) and much below the wilting point of Stipagrostis ciliata grasses, whereas the deeper soil layer is wetter (4%). The grain size distribution of soil samples taken from inside and outside the fairy circles reveals considerable heterogeneity in the size fractions due to aeolian (wind-driven) sand sorting. The bare soil inside the fairy circles contains coarser grains, and the ground surface is covered by sand megaripples. There is a linear trend between the vertical soil moisture gradient and the median grain diameter. Fine particles trapped on the vegetated edges of the fairy circle result in small nebkhas that increase the soil water retention at the surface. The dry and loose coarser topsoil inside the fairy circles may prevent the recolonization of new seedlings with short root lengths inside the fairy circles. Our results highlight the role of aeolian sand transport and deposition in desert vegetation environments and seem to support the notion that fairy circle formation may be affected by the interplay between sand sorting and soil moisture gradients. Full article
Show Figures

Figure 1

10 pages, 1467 KiB  
Review
Percutaneous Deep Venous Arterialization for Limb Salvage in No Option Patients with Chronic Limb-Threatening Ischemia
by Stavros Spiliopoulos, Efstathia Davoutis, Nikolaos-Achilleas Arkoudis, Kaji Sritharan and Symeon Lechareas
J. Clin. Med. 2023, 12(23), 7324; https://doi.org/10.3390/jcm12237324 - 26 Nov 2023
Cited by 3 | Viewed by 2310
Abstract
An endovascular approach is often considered the first line treatment option for lower limb chronic limb-threatening ischemia (CLTI), which is defined by the presence of ischemic rest pain and severe tissue loss, such as ulcers or gangrene. Although the technical success rate of [...] Read more.
An endovascular approach is often considered the first line treatment option for lower limb chronic limb-threatening ischemia (CLTI), which is defined by the presence of ischemic rest pain and severe tissue loss, such as ulcers or gangrene. Although the technical success rate of endovascular revascularization is high, in specific patients with advanced infrapopliteal disease and the absence of run-off tibial vessels, the so-called ‘desert foot’, the chance of successful endovascular revascularization is minimal. In order to avoid primary amputation, several treatment options are currently being investigated, including gene therapy and deep venous arterialization. This review focuses on the percutaneous deep venous arterialization technique as a promising, minimally invasive treatment option for limb salvage in CLTI patients presenting with a ‘desert foot’. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

13 pages, 1505 KiB  
Review
Cardiovascular Prognosis in Patients with Peripheral Artery Disease and Approach to Therapy
by Antonio Curcio, Alessandra Panarello, Carmen Spaccarotella and Ciro Indolfi
Biomedicines 2023, 11(12), 3131; https://doi.org/10.3390/biomedicines11123131 - 24 Nov 2023
Cited by 5 | Viewed by 2102
Abstract
Peripheral artery disease (PAD), the pathophysiologic narrowing of the arterial blood vessels of the lower limbs due to atherosclerosis, is estimated to affect more than 200 million people worldwide and its prevalence ranges from 0.9 to 31.3% in people aged ≥50 years. It [...] Read more.
Peripheral artery disease (PAD), the pathophysiologic narrowing of the arterial blood vessels of the lower limbs due to atherosclerosis, is estimated to affect more than 200 million people worldwide and its prevalence ranges from 0.9 to 31.3% in people aged ≥50 years. It is an established marker of systemic obstructive atherosclerosis, which depicts patients at higher risk of myocardial infarction and stroke, due to the involvement of coronary and cerebral arteries in the atherosclerotic process. Therefore, identifying PAD, particularly in patients with coronary artery disease, is important to assess the cardiovascular risk score and implement specific therapies and prevention strategies. Since PAD emerged as an important clinical cardiovascular predictor, even more than other typical cardiovascular risk factors, an aggressive strategy to identify and treat PAD patients should be pursued by general practitioners, cardiologists, and vascular surgeons; similarly, preventive strategies should be implemented to improve prognosis and outcomes, particularly in patients suffering from both coronary artery disease and PAD. In this review, we describe the pathophysiology, including limb vasoconstriction after coronary angioplasty, the diagnosis of PAD, prognosis according to cardiovascular events, coronary artery disease, and heart failure. Furthermore, a large section of this review is on management, which spans from risk factors’ modification to antithrombotic therapy, and revascularization is provided. Finally, considerations about newer therapeutic options for the “desert foot” are discussed, including gene therapy. Full article
Show Figures

Figure 1

14 pages, 9161 KiB  
Article
Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA)
by Chiara Elmi, Jacob R. Whitlock, Matthew T. Macdowell and Richard D. Foust
Geosciences 2023, 13(8), 235; https://doi.org/10.3390/geosciences13080235 - 8 Aug 2023
Cited by 2 | Viewed by 2720
Abstract
Many regions of the United States contain manganese deposits economically valuable in New England, Appalachian, and Piedmont regions in the Eastern United States, in Northern Arkansas, and, to a small extent, in Central–Western California. Mn oxide/hydroxide (commonly referred to as Mn oxide minerals) [...] Read more.
Many regions of the United States contain manganese deposits economically valuable in New England, Appalachian, and Piedmont regions in the Eastern United States, in Northern Arkansas, and, to a small extent, in Central–Western California. Mn oxide/hydroxide (commonly referred to as Mn oxide minerals) are found in a wide variety of geological settings and occur as fine-grained aggregates, veins, marine and freshwater nodules and concretions, crusts, dendrites, and coatings on rock surfaces (e.g., desert varnish). How manganese oxides form and what mechanisms determine which oxides are likely to form are limited and still debated. This paper focuses on Mn oxides collected at the southern bound of the abandoned open-pit site called Crimora Mine (Augusta County, Virginia). This study uses mineralogical and chemical features to shed light on the origin of manganese deposits in Crimora along the western foot of the Blue Ridge in South–West Virginia. We report the first detailed study on the genesis of the Crimora manganese deposit conducted since the mine was closed in the 1950s. Crimora Mine sample is dark black fine- to medium-grained round and oblong nodules coated with a fine-grained intermix of yellowish earthy limonite, clays, and quartz. Scanning electron microscopy (SEM) revealed that the Crimora Mn-oxides exhibit concentric layering, breccia-like matrices, and veins. X-ray powder diffraction (XRPD) identified the set of Mn minerals as hollandite and birnessite. The concentration and range of dissolved chemical species in freshwater, seawater, and hydrothermal depositional fluids impart a geochemical signature to the Mn-oxides, providing a diagnostic tool to shed light on their genetic origin. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the Crimora manganese oxides shows Mn, Fe, and Ti, as well as trace elements such as Co, Ba, Y, Zn, Cr, Ni, Tl, La, V, and Li. A bivariate analysis based on the geochemical correlation of Mn and other common substituting cations (e.g., Fe, Co, Ti) shows a mixed genesis in different environments with varying biological and sedimentary supergene (freshwater and marine) conditions. These data suggest that the Mn-rich deposit in Crimora, VA, was formed in a continental margin environment of surficial deposits and reprecipitated in mixed biogenic and supergene conditions. Full article
Show Figures

Figure 1

14 pages, 18635 KiB  
Article
Development of a Lizard-Inspired Robot for Mars Surface Exploration
by Guangming Chen, Long Qiao, Zhenwen Zhou, Lutz Richter and Aihong Ji
Biomimetics 2023, 8(1), 44; https://doi.org/10.3390/biomimetics8010044 - 18 Jan 2023
Cited by 13 | Viewed by 7018
Abstract
Exploring Mars is beneficial to increasing our knowledge, understanding the possibility of ancient microbial life there, and discovering new resources beyond the Earth to prepare for future human missions to Mars. To assist ambitious uncrewed missions to Mars, specific types of planetary rovers [...] Read more.
Exploring Mars is beneficial to increasing our knowledge, understanding the possibility of ancient microbial life there, and discovering new resources beyond the Earth to prepare for future human missions to Mars. To assist ambitious uncrewed missions to Mars, specific types of planetary rovers have been developed for performing tasks on Mars’ surface. Due to the fact that the surface is composed of granular soils and rocks of various sizes, contemporary rovers can have difficulties in moving on soft soils and climbing over rocks. To overcome such difficulties, this research develops a quadruped creeping robot inspired by the locomotion characteristics of the desert lizard. This biomimetic robot features a flexible spine, which allows swinging movements during locomotion. The leg structure utilizes a four-linkage mechanism, which ensures a steady lifting motion. The foot consists of an active ankle and a round pad with four flexible toes that are effective in grasping soils and rocks. To determine robot motions, kinematic models relating to foot, leg, and spine are established. Moreover, the coordinated motions between the trunk spine and leg are numerically verified. In addition, the mobility on granular soils and rocky surface are experimentally demonstrated, which can imply that this biomimetic robot is suitable for Mars surface terrains. Full article
(This article belongs to the Special Issue Biologically Inspired Robotics)
Show Figures

Figure 1

17 pages, 9320 KiB  
Article
Bionic Design of Multi-Toe Quadruped Robot for Planetary Surface Exploration
by Guangming Chen, Long Qiao, Bingcheng Wang, Lutz Richter and Aihong Ji
Machines 2022, 10(10), 827; https://doi.org/10.3390/machines10100827 - 20 Sep 2022
Cited by 13 | Viewed by 3765
Abstract
To increase the knowledge and exploit new resources beyond the Earth, planetary surface exploration on the Moon or Mars attracts significant attention around the globe. Due to the fact that these planetary surfaces are widely covered by soil-like materials, various structures of planetary [...] Read more.
To increase the knowledge and exploit new resources beyond the Earth, planetary surface exploration on the Moon or Mars attracts significant attention around the globe. Due to the fact that these planetary surfaces are widely covered by soil-like materials, various structures of planetary rovers have been proposed to adapt to the terrains. Nonetheless, the traditional rover structures, such as wheeled and leg-wheeled, have shown limitations in moving on granular soils. To improve the mobility, this paper proposes a multi-toe quadruped robot inspired by the desert chameleon animal. The key features are that each bionic foot possesses four toes to stabilize them on granular materials. Moreover, a bionic flexible spine is designed to coordinate with walking and turning gaits and to make the robot approach an animal-like mobility. To assess the robot performances, kinematics analysis and analytical modeling of foot, leg, and spine movements are carried out. The results demonstrate that this robot can effectively walk and turn in accordance with the adopted gaits. Finally, field tests of moving over sands have been conducted. It shows that the robot can stably walk and turn on sands, which indicates that it is adaptable to planetary granular terrains. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

19 pages, 159445 KiB  
Article
History and Archaeology in Discourse on the Dernberg–Reconstructing the Historical Landscape of a Medieval Motte-and-Bailey Castle and Deserted Village
by Roland Filzwieser, David Ruß, Matthias Kucera, Michael Doneus, Gerhard Hasenhündl, Geert J. Verhoeven, Georg Zotti, Andreas Lenzhofer, Gerhard Stüttler, Michał Pisz and Wolfgang Neubauer
Heritage 2022, 5(3), 2123-2141; https://doi.org/10.3390/heritage5030111 - 8 Aug 2022
Cited by 4 | Viewed by 3264
Abstract
Investigating deserted medieval castles and villages in remote rural areas paired with a scarcity of meaningful written sources is a challenging task that can be significantly enhanced by the use of non-invasive archaeological prospection methods. Furthermore, the interpolation of stratigraphic relationships among maps [...] Read more.
Investigating deserted medieval castles and villages in remote rural areas paired with a scarcity of meaningful written sources is a challenging task that can be significantly enhanced by the use of non-invasive archaeological prospection methods. Furthermore, the interpolation of stratigraphic relationships among maps by analysing paths and field boundaries, as performed by Klaus Schwarz in the 1980s, can also contribute significantly. Thus, in order to resolve numerous unanswered questions, a multidisciplinary approach is required. In this paper we present preliminary archaeological prospection data using magnetics and airborne laser scanning (ALS) as well as methodological considerations on the systematic analysis of historical maps on the site of Dernberg, a medieval motte-and-bailey castle with an adjoining deserted village. The magnetic data and corresponding aerial images, although not providing decisive information on internal structures, show several historical roads that allow for the localisation of the village at the foot of the castle hill, as well as other pathways and defensive structures. Data derived from laser scanning surveys carried out by uncrewed aerial vehicles, respectively, drone flights allow for a significant gain in information compared to publicly available ALS data. In a methodological discussion on the systematic analysis of historical maps, the site of Dernberg is used to illustrate not only how such an analysis can determine chronological sequences with respect to the pattern of former agricultural field systems and road networks, but that these assumptions can be confirmed in part by geophysical surveys. Full article
(This article belongs to the Section Archaeological Heritage)
Show Figures

Figure 1

24 pages, 16032 KiB  
Article
Drones over the “Black Desert”: The Advantages of Rotary-Wing UAVs for Complementing Archaeological Fieldwork in the Hard-to-Access Landscapes of Preservation of North-Eastern Jordan
by Stefan L. Smith
Geosciences 2020, 10(11), 426; https://doi.org/10.3390/geosciences10110426 - 27 Oct 2020
Cited by 8 | Viewed by 4128
Abstract
The increasing availability and sinking costs of unmanned aerial vehicles (UAVs), commonly known as drones, has resulted in these devices becoming relatively commonplace on archaeological sites. The advantages of being able to rapidly obtain bespoke high-resolution images from the air are conspicuous to [...] Read more.
The increasing availability and sinking costs of unmanned aerial vehicles (UAVs), commonly known as drones, has resulted in these devices becoming relatively commonplace on archaeological sites. The advantages of being able to rapidly obtain bespoke high-resolution images from the air are conspicuous to anyone familiar with archaeological fieldwork; meanwhile the possibilities of subsequently processing such images together with their metadata to obtain digital elevation models (DEMs) and three-dimensional (3-D) models provide additional bonuses to analysis and interpretation. The recent use of a rotary-wing drone by the Western Harra Survey (WHS), an archaeological project co-directed by the author in the “Black Desert”, or Harra, of north-eastern Jordan, showcases these advantages in the context of a landscape that (a) is subject to negligible transformation processes and (b) is difficult to access, both by vehicle and on foot. By using processed drone imagery to record in detail prehistoric basalt structures visible on the surface and their surroundings, morphological site typologies hypothesised from satellite imagery were confirmed, relative dating within sites ascertained, structural features and damage documented, spatial relationships to natural resources established, offsite features traced, modern threats to heritage catalogued, and practically inaccessible sites investigated. Together, these results, most of which were only obtainable and all of which were obtained more rapidly by using a drone, represent significant insights into this underrepresented region, and provide a case-study for the benefits of these devices in other landscapes of a similar nature. Full article
Show Figures

Figure 1

Back to TopTop