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Abstract: The increasing availability and sinking costs of unmanned aerial vehicles (UAVs),
commonly known as drones, has resulted in these devices becoming relatively commonplace
on archaeological sites. The advantages of being able to rapidly obtain bespoke high-resolution
images from the air are conspicuous to anyone familiar with archaeological fieldwork; meanwhile the
possibilities of subsequently processing such images together with their metadata to obtain digital
elevation models (DEMs) and three-dimensional (3-D) models provide additional bonuses to analysis
and interpretation. The recent use of a rotary-wing drone by the Western Harra Survey (WHS),
an archaeological project co-directed by the author in the “Black Desert”, or Harra, of north-eastern
Jordan, showcases these advantages in the context of a landscape that (a) is subject to negligible
transformation processes and (b) is difficult to access, both by vehicle and on foot. By using
processed drone imagery to record in detail prehistoric basalt structures visible on the surface
and their surroundings, morphological site typologies hypothesised from satellite imagery were
confirmed, relative dating within sites ascertained, structural features and damage documented,
spatial relationships to natural resources established, offsite features traced, modern threats to heritage
catalogued, and practically inaccessible sites investigated. Together, these results, most of which were
only obtainable and all of which were obtained more rapidly by using a drone, represent significant
insights into this underrepresented region, and provide a case-study for the benefits of these devices
in other landscapes of a similar nature.

Keywords: remote sensing; rotary-wing UAVs; drone imagery; digital elevation models;
three-dimensional structure models; archaeological fieldwork; arid environments; basalt desert;
landscape accessibility; Black Desert; Harra; Jordan

1. Introduction

Archaeology is a discipline that has embraced aerial documentation from its very outset, beginning
with balloon and aircraft imagery from at least the early 20th century onwards [1]. Therefore, it is not
surprising that the advantages of small-sized unmanned aerial vehicles (UAVs), known as drones,
have been recognised and used by numerous projects across the globe since the commencement of their
commercial availability and viability [2]. Already in the early 2000s, an unmanned remote helicopter,
the forerunners of today’s rotary-wing drones, was being used by a team from the ETH Zürich at the
pre-Incan settlement of Pinchago Alto, Peru, to aerially document and create computerised models of
its stone walls [3]. Since the mid-2010s, they have become relatively commonplace on archaeological
fieldwork sites, greatly facilitating the planning, data recording, and analysis of both surveyed and
excavated remains. Broadly, these devices fall into two categories: Fixed-wing and rotary-wing craft.
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The former is best suited for large-scale landscape documentation, as they can attain a higher altitude
and have a much longer range than the latter—however, they require space for take-off and landing
and a significant amount of expertise to pilot. Rotary-wing craft, by contrast, are best suited to the
documentation of smaller-scale areas (for example, individual archaeological features), take off and
land vertically, are easily piloted, and can have their flight trajectories rapidly adjusted for ad hoc
documentation of specific details [2,4] (p. 278). Together, drones have greatly increased the possibilities
for archaeologists to not only easily record points of interest from the air in extreme detail, but also
process their imagery to bring to light data otherwise hidden from view [5].

Aerial archaeology in the country of Jordan is no exception, and commenced at least as early as
the 1920s, with the photographs of P. E. Maitland, L. W. B. Rees, and O. G. S. Crawford [6]. With the
creation of the Aerial Photographic Archive for Archaeology (APAAME) [7] in 1978, and especially
since its commencement of flights for explicit archaeological purposes in 1997 [8], systematic aerial
photographs in specific locations and at high enough resolutions to be used for accurate interpretations of
archaeological remains became widely available. However, widespread use of UAVs for archaeological
work has in Jordan somewhat lagged behind their implementation in other countries for a number
of reasons. As is the case in most nations, the laws surrounding the use of these devices has been
changing rapidly in the last few years in Jordan, and while some projects had success legally importing
and exporting drones in co-operation with its Department of Antiquities in the early 2010s, this became
more difficult after a review of the regulations in 2016 [9]. Subsequent attempts were unable to
obtain clearance for the import and export of such devices through the expected channels, and for
several years no archaeological fieldwork teams made use of them. In 2018, the Western Harra Survey,
a project co-directed by the author and located in the north-eastern deserts of the country, contacted
the Royal Film Commission, a public organisation responsible, amongst other things, for facilitating
and obtaining permits for commercial and private filming in Jordan, including the use of drones [10].
This has resulted in a fruitful collaboration that allowed this project to make use of such a device
during its April and September 2019 fieldwork seasons.

The Western Harra Survey (WHS) is a multidisciplinary project co-directed by the author and
Dr. Marie-Laure Chambrade, CNRS, Archéorient, in collaboration with the Institut Français du
Proche-Orient (IFPO) and the Department of Antiquities of the Kingdom of Jordan. It is located
in the so-called “Black Desert”, or Harra, an arid landscape that is part of the Harra’t al-Sham,
a 50,000 km2 basaltic plateau stretching from southern Syria to north-western Saudi Arabia (Figure 1).
The Jordanian Harra covers 11,400 km2 and consists primarily of lava flows dating from the Oligocene
to the Quaternary (most recently ca. 400,000 BP), covered with a silty loess, above which basalt
blocks almost completely pave the surface, largely protecting it from aeolian processes (Figure 2) [11].
This makes traversing this region extremely difficult to this day, except along seasonal rainfall valleys
(called awdiya; singular: wadi) or mudflats (called qe’an; singular: qa’a). Countless structures built
from this local basalt stone exist in the region, and although known to its Bedu nomads for centuries,
they were not recorded in either text or image until the 1920s, while their academic study properly
commenced in the 1970s with excavations and surveys at the site of Jawa, followed by the same at
Dhuweila [12–15]. Since then, a handful of surveys and excavations have evidenced widespread
prehistoric occupation of the area, and despite a lack of consensus on whether the majority of structures
were permanent settlements or seasonal camps, both typological and scientific dating indicates a long,
though not necessarily continuous, occupation chronology lasting from at least the Middle Palaeolithic
(max. ca. 200,000 BP) [16] (p. 629) to the Roman period (3rd century AD) [17].
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Figure 1. Map of the location of the Western Harra Survey (WHS) and the extent of the Harra’t al-
Sham (32°0′ N, 37°6′ E). Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, 
Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS User Community. This figure has previously 
been published in [18]. 

Figure 1. Map of the location of the Western Harra Survey (WHS) and the extent of the Harra’t al-Sham
(32◦0′ N, 37◦6′ E). Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping,
Aerogrid, IGN, IGP, swisstopo and the GIS User Community. This figure has previously been published
in [18].
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Figure 2. A view of the typical landscape of dense basalt blocks atop silty loess that makes up the 
majority of the Harra. This figure has previously been published in [18]. 

The main goals of the WHS are to explore and study the interior of this landscape, with a focus 
on the geography, geology, and prehistoric human occupation (emphasising the seventh to early 
third millennium BC), using a 36 by 32 km survey area located in the western portion of the basalt 
region as a proxy (Figure 3) [18–22]. Following an intensive remote sensing survey using freely 
available very high-resolution satellite imagery from the GoogleEarth platform, which identified 2770 
individual features in the study area, the first fieldwork season took place in 2015. This consisted of 
visiting a representative selection of 50 structures and documenting their morphologies and the 
artefacts visible on their surfaces. Based on preliminary analyses of the collected data, which 
consisted of abundant lithic artefacts at certain sites, the identification of raw material chert reserves, 
and the recognition of typological distinctions between features formerly assigned the same 
morphological descriptors (see below), subsequent seasons were planned in a more targeted manner, 
with geography and geology becoming increasingly important to the project’s goals. In total, the 
WHS has thus far conducted four fieldwork seasons (in 2015, 2017, and two in 2019) and one study 
season (in 2018). 

Figure 2. A view of the typical landscape of dense basalt blocks atop silty loess that makes up the
majority of the Harra. This figure has previously been published in [18].

The main goals of the WHS are to explore and study the interior of this landscape, with a focus on
the geography, geology, and prehistoric human occupation (emphasising the seventh to early third
millennium BC), using a 36 by 32 km survey area located in the western portion of the basalt region as
a proxy (Figure 3) [18–22]. Following an intensive remote sensing survey using freely available very
high-resolution satellite imagery from the GoogleEarth platform, which identified 2770 individual
features in the study area, the first fieldwork season took place in 2015. This consisted of visiting a
representative selection of 50 structures and documenting their morphologies and the artefacts visible
on their surfaces. Based on preliminary analyses of the collected data, which consisted of abundant
lithic artefacts at certain sites, the identification of raw material chert reserves, and the recognition
of typological distinctions between features formerly assigned the same morphological descriptors
(see below), subsequent seasons were planned in a more targeted manner, with geography and geology
becoming increasingly important to the project’s goals. In total, the WHS has thus far conducted four
fieldwork seasons (in 2015, 2017, and two in 2019) and one study season (in 2018).
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Figure 3. Map showing all sites within the WHS identified by the satellite imagery survey, with main 
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surface morphologies, it became clear that the precise documentation of these structures was of 
utmost importance. It has long been recognised by explorers and researchers in the Harra that its 
prehistoric structures can be divided into several distinct varieties, including hunting traps for wild 
gazelles known as “kites”, burial sites called “pendants”, and features termed “wheels” (sometimes 
“jellyfish”), which have variously been interpreted as habitation, animal corral, or ritual sites (Figure 
4) [11–13,23]. However, already the use of very high-resolution satellite imagery showed that certain 
discrete site types had previously been grouped together and thus required a typological seriation. 
In particular, the sites known as “wheels” could be classed into two distinct categories—“true 
wheels”, which comprise a roughly circular or elliptical outline, inside which enclosures are divided 
by mostly straight walls, arranged like the spokes of a wheel, and “encircled enclosure clusters”, 
comprised of a randomly clustered set of sub-circular or sub-elliptical enclosures, with an irregular 
external outline encircled by a series of very small rectangular enclosures with right-angled corners 
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Figure 3. Map showing all sites within the WHS identified by the satellite imagery survey, with main
roads and natural features highlighted. This figure has previously been published in [18].

With one of the main foci of the WHS being the definition of site typologies based on their visible
surface morphologies, it became clear that the precise documentation of these structures was of utmost
importance. It has long been recognised by explorers and researchers in the Harra that its prehistoric
structures can be divided into several distinct varieties, including hunting traps for wild gazelles
known as “kites”, burial sites called “pendants”, and features termed “wheels” (sometimes “jellyfish”),
which have variously been interpreted as habitation, animal corral, or ritual sites (Figure 4) [11–13,23].
However, already the use of very high-resolution satellite imagery showed that certain discrete site types
had previously been grouped together and thus required a typological seriation. In particular, the sites
known as “wheels” could be classed into two distinct categories—“true wheels”, which comprise a
roughly circular or elliptical outline, inside which enclosures are divided by mostly straight walls,
arranged like the spokes of a wheel, and “encircled enclosure clusters”, comprised of a randomly
clustered set of sub-circular or sub-elliptical enclosures, with an irregular external outline encircled by
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a series of very small rectangular enclosures with right-angled corners (Figure 5). The identification
during the 2017 fieldwork season of anthropogenic, and likely prehistoric, pathways of cleared basalt
rock stretching across large distances of the landscape (a phenomenon already recognised by other
researchers in the region [24,25]) provided a further research objective that could best be analysed by
precise surface documentation [18,22].
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The “Black Desert” constitutes a landscape of preservation—“Zone 1” as defined by Tony
Wilkinson [26] (pp. 41–42)—featuring negligible natural transformation processes. Thus, the archaeological
features in question all strongly impact its surface (in the form of either structural protrusions or
anthropogenically caused depressions) in a way that serves as a very close proxy for their original
form. Additionally, the relative chronology of anthropogenic impact on this landscape is closely related
to its stratigraphy, thus significant data on this can be gathered from surface documentation alone.
Furthermore, any disturbance of the surface “paving” of basalt blocks stands out visually due to
the particularly high contrast and sharp definitions of black stones atop light brown loess. Finally,
the archaeological features of the Harra extend across large distances, are located in areas that are
hard to access, and yet are too small to allow for comprehensive analyses using the highest available
satellite imagery resolutions. Together, these factors make the benefits of using a drone for their
documentation obvious.

2. Materials and Methods

The WHS therefore initiated the process of collaborating with Jordan’s Royal Film Commission in
October 2018 and submitted application forms early the following year to be ready for a first season
with a drone in April 2019. The device used was a rotary-wing DJI Phantom 4 (2016 version), capable of
flight times of around 28 min maximum per battery, a top range of 5 km, and equipped with a camera
with 4000 × 3000-pixel photo and 4096 × 2160-pixel (4K) video capabilities [27]. The goals of this
season regarding the drone focussed on the aerial documentation of a selection of “true wheels” and
“encircled enclosure clusters”, as well as some preliminary attempts at recording pathways and sites’
environmental contexts. In total, seven such sites were vertically photographed in detail by planned
flights using the DroneDeploy program, with ground markers recorded by a GPS device and an optical
level to calibrate the DEMs derived from the imagery (see below). The environmental contexts of
three of these were additionally photographed vertically, and three more were recorded similarly
but without the ground markers due to their hard-to-access locations (see Section 4.1). In addition,
these sites, and others in their vicinities, were documented by numerous oblique photographs and
videos. The subsequent fieldwork season, in September 2019, in part continued this data collection
strategy, with a further seven “true wheels” and “encircled enclosure clusters” recorded by vertical
imagery with ground markers and one hard-to-access site without. However, a greater focus on
environmental contexts meant that not only were the surroundings of four of these sites also recorded,
but a further 12 were photographed as part of large-area vertical imaging. In addition, a region with
abundant likely anthropogenic paths, clustered around two adjacent qe’an, was recorded in the same
fashion, while as before, numerous oblique photographs and videos were also taken. Across both
fieldwork seasons, elevations for the planned flights varied between 10 and 140 m. To mitigate the
necessarily limited flight times of the device, four batteries were used and a gasoline-powered electricity
generator as well as a multiple-battery charger transported in the vehicles used to drive to each site.
This enabled the recharging of the drone batteries over the midday period (1.5–2 h), allowing for eight
batteries’ worth of flight time per day.

The gathered data were subsequently processed in a number of ways, depending on the research
questions wishing to be addressed (see Section 3). All digital manipulations were carried out using
Agisoft Metashape Professional version 1.5.2, a photogrammetry tool that, along with its predecessor
PhotoScan, has been used by many archaeological and cultural heritage projects for both large- and
small-scale geospatial visualisations [28,29]. The most basic processing involved the creation of
spatially accurate orthomosaics from the series of vertical images taken at each site, stitched together
to form not only a detailed, but also precise, undistorted view of the landscape. Since virtually all
photographs feature a degree of curved distortion towards their edges due to the shape of a camera
lens, all drone images were taken with a minimum x-axis overlap of 75% and y-axis overlap of 65%.
This means that the orthorectification process used at most the centre third of each image, where the
distortion is minimal. Furthermore, since each image was geotagged in its metadata with unique GPS
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co-ordinates, each photograph could be accurately geolocated to create a locationally precise stitched
image [30]. The resulting imagery is superior not only in terms of resolution, but also in terms of
geometrical precision, to satellite imagery, which can feature significant distortions over small areas
such as that of a single archaeological site [31]. The resolution of the orthomosaics processed from the
WHS data varies between 1.0 and 4.2 cm/px, depending on the drone flight elevation for each plan.

Using a process called structure-from-motion, the recorded images can further be manipulated by
one of a number of algorithms to estimate camera positions in relation to the photographed subject by
point-matching multiple images, forming a point cloud from which digital elevation models (DEMs)
and three-dimensional (3-D) models can be created [29,32]. The former outputs a shaded, coloured,
or contour-lined visualisation of the elevation of the landscape in question. By entering the measured
GPS co-ordinates and relative elevations of the ground markers (when they were used), and visually
marking them on the imagery, these relative elevation models can be given absolute data in all three
dimensions, allowing for an accurate calculation of scale and for their geolocation within the wider
landscape [30]. The DEMs processed by the WHS have resolutions of between 2.0 and 33.3 cm/px.
Using the point cloud, a digital wireframe mesh can be calculated, and subsequently “draping” the
orthomosaic over this creates a photorealistic 3-D model that can be viewed from all sides, allowing for
the elucidation of yet further details such as stratigraphic relationships and calculations of structural
dimensions, volumes, and quantifiable topographic forms [33]. The technical details of each relevant
drone flight and of the models processed from their data are listed in Table 1.

Table 1. Technical details for each drone flight that produced data referenced in this paper.

Site Number(s)/Flight Name 652 691 692 976–977 1129 1745

Relevant Figures 6a,10a,10b,14 6b 13a,13b 7b,9,11 19a,19b 12a,12b

general data

number of images 169 153 375 319 273 329

flying altitude (m) 30.1 24.4 22.6 39.6 19.2 15.5

ground resolution (cm/px) 0.489 0.991 0.88 1.59 0.726 0.604

coverage area (m2) 18,000 15,000 16,500 40,300 9930 10,800

av. camera location error (m) 1.137 1.131 1.017 1.167 1.031 1.154

point cloud

tie points 70,020 107,121 138,522 91,711 87,064 362,265

projections 584,475 576,413 1,220,468 1,011,023 713,674 1,140,599

RMS reprojection error (px) 0.883 1.267 1.147 1.166 1.206 1.209

max reprojection error (px) 15.564 56.176 51.23 37.973 54.265 30.859

mean key point size (px) 3.034 6.451 6.024 6.065 6.86 7.75

av. tie point multiplicity 8.971 5.696 9.951 12.819 10.271 3.337

DEM
resolution (cm/px) 1.96 – 3.52 6.35 2.9 2.42

point density (pts/m2) 2610 – 807 248 1190 1710

Site Number(s)/Flight Name 1745 Environs 1929 1972 1972 Environs 1978 2019 2429 Environs

Relevant Figures 15a,15b 8 21 18 6c 7a 17a,17b

general data

number of images 266 172 250 207 237 308 595

flying altitude (m) 81.2 29.2 23.5 84.3 27.8 22.7 136

ground resolution (cm/px) 2.71 1.02 0.92 3.23 1.1 0.887 4.16

coverage area (m2) 221,000 29,100 14,400 267,000 18,800 16,500 653,000

av. camera location error (m) 4.47 1.741 1.265 3.667 1.053 1.06 5.148

point cloud

tie points 162,392 151,086 112,481 157,112 76,017 186,901 192,628

projections 1,046,583 679,540 864,947 774,911 758,185 1,120,733 1,999,640

RMS reprojection error (px) 0.711 0.829 1.143 0.947 1.224 1.129 1.064

max reprojection error (px) 9.119 14.33 33.576 31.751 28.09 30.752 28.068

mean key point size (px) 2.482 5.136 5.879 6.077 5.747 6.185 6.534

av. tie point multiplicity 6.616 4.581 8.383 5.127 11.506 6.462 10.998

DEM
resolution (cm/px) 5.42 – – 12.9 – – 33.3

point density (pts/m2) 341 – – 60 – – 9
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3. Results

3.1. Vertical Orthomosaics

The geometrical precision of these created images already generated immensely useful data for
the WHS. Since the project is attempting to use morphological site forms to create typologies which in
turn could be related to differing time periods or purposes of construction and/or use, and therefore be
used to preliminarily map a chronologically or ideas-based spread of human occupation across the
Harra [18,21], such data are essential for obtaining the required levels of accuracy for the necessary
analyses. They also brought to light interesting details on the forms of several sites—for example,
while “true wheel” sites appear to be circular or elliptical with linear internal walls on very high
resolution satellite imagery, the drone-derived orthomosaics showed their outlines to comprise a variety
of shapes, from rounded pentagons and heptagons to irregular shapes with concave curves, and their
internal walls to follow a combination of straight and curved paths (Figure 6). This heterogeneity
of form was also found to be present amongst the “encircled enclosure clusters”, as although these
sites are by their nature irregularly shaped, they were furthermore found to vary by the presence of
very small enclosures adjacent to their walls, which at some sites appear internally, at some externally,
at some both, and at others are absent (Figure 7).
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The benefits of these images go beyond ascertaining the precise shapes of prehistoric structures
however, as in a landscape such as the Harra they can also give information on relative chronologies.
A good example of this is Site 1929, a “true wheel” that abuts the wall of a “kite”—since almost none of
the sites in the survey area of the WHS have proper names, the project’s own numbering system is
used here to distinguish them. On the orthomosaic, it becomes clear that the wall of the “kite” appears
to stop a few metres from each edge of the external wall of the site (Figure 8). The interpretation of this
follows straightforwardly: The “true wheel” post-dates the “kite”, and was therefore partly constructed
using the readily available loose basalt blocks of its wall, a phenomenon noted at several sites by
Kempe and Al-Malabeh [11] (p. 56). This correlates with the relative dating of “kites” conducted by
other projects in the region, which place them as some of the oldest anthropogenic structures of the
Harra, dating to at least the Early Neolithic, though often subsequently re-used, e.g., [24,34]. “Wheels”,
on the other hand, have been dated to various periods between the Late Neolithic and Late Chalcolithic,
but no earlier [24,35,36].
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3.2. Digital Elevation Models

The benefits of the drone-derived data are even more apparent when one examines the created
DEMs. On a basic level, specific features of sites that were difficult or impossible to detect on either
real-world imagery or on the ground became clearly apparent on the DEM, as has been recognised for
several archaeological landscapes across the Near East, e.g., [37]. For example, while the shape of the
small enclosures that surround “encircled enclosure cluster” Site 977 are sometimes recognisable as
being rectangular on the orthomosaic, especially one example west and one north-west of the main site
(see Figure 7b), the DEM makes this form recognisable for practically all of these features (Figure 9).
Another example is the presence of cairns on top of walls of sites, which although instantly visible on
the ground, do not appear clearly on vertical aerial imagery since they essentially constitute a pile
of stones on top of other piled-up stones. On a DEM, however, they distinctly stand out from the
background on account of their greater elevation, as illustrated by “true wheel” Site 652 (black circles
on Figure 10). A further detail visible on the DEM of that site is a gap in the outer wall on its western
side, possibly constituting an entrance, which is practically invisible on the orthomosaic due to the
surrounding stone scatter (red circles on Figure 10).
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DEMs were also found to be useful for certain aspects of relative dating. In particular, the presence
of walls preserved to a higher course of stones usually indicates a later structure that has been subject
to fewer transformation processes, or a more recent modification of an earlier construction. A good
example of this was found at “encircled enclosure cluster” Site 976, where the central and south-eastern
enclosure have walls that are distinctly higher than the rest of the site (Figure 11). The hypothesis that
this constitutes evidence for a later modification of the structure is further given weight by the fact that
the south-eastern enclosure prominently protrudes from the otherwise relatively uniform outer wall of
the site. While this in itself would not necessarily be an indication of a modification of the structure,
when combined with the higher wall courses this interpretation can reasonably be made.
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clearly recognisable.

Certain sites’ footprints on DEMs revealed features that highlighted both specific features and
relative dating evidence. One instance of this is “true wheel” Site 1745, the orthomosaic of which
clearly shows a path that appears to abut its south-western edge (black arrows on Figure 12a). On the
DEM, however, it is evident that this path runs across the site and emerges from its north-eastern
edge to continue across the landscape, indicating that its use at least additionally post-dates the “true
wheel” (Figure 12b). This example also highlights the co-directional nature of interpretations using
drone-derived data, as once the DEM had been consulted, it became conspicuous that certain gaps in
the internal walls of Site 1745, visible on the orthomosaic, constituted evidence for the path, though this
had not been recognised before (white arrows on Figure 12). A more striking example of a DEM
disclosing multiple datapoints can be found at Site 692, which on the orthomosaic appears as an
unusual “true circle” with a linear wall protruding on its north-west side (Figure 13a). The DEM
reveals the true nature of this site, however—a “pendant” (which consists of a single large cairn from
which a linear arrangement of small cairns emanates – see Figure 4) superimposed upon a regular
“true wheel” (Figure 13b). Once again, the benefit of hindsight after having viewed the DEM allowed
the researchers to recognise the discrete features on the orthomosaic, despite this not being apparent
beforehand. This evidence also ties in with other researchers’ documentations of pendants frequently
overlying “wheels” [13] as well as C14 samples from instances of these features in Yemen, which date
them to the first millennium BC [38] (pp. 329–335), much later than the Late Neolithic to Early (or even
Late) Chalcolithic dates usually associated with “wheels” [24,35,36].
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Figure 13. (a) Orthomosaic and (b) DEM of Site 692. On the latter, the main cairn (black arrow)
and linear arrangement of smaller cairns (white arrows) of the superimposed “pendant” site are
clearly visible.

3.3. Three-Dimensional Models

The processing of drone imagery from the WHS to create 3-D models is still in its early stages; thus,
they have been studied to a lesser degree than the data detailed above. Nevertheless, some preliminary
benefits of these models, in ways that set them apart from both orthomosaics and DEMs, are already
apparent. Specifically, as noted by Buccellati [39], they allow for particularly clear visualisations of
stratigraphic details. One example of this is at Site 652, where to begin with, the cairn discerned on the
DEM (see Section 3.2) is clearly visible on the 3-D model as a prominent conical structure (black circle
on Figure 14). More impactful is the visualisation of a gap in the north-eastern side of the site’s outer
wall, which was already noticeable on the DEM and to a lesser extent the orthomosaic (white circles on
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Figure 10). On the 3-D model, however, it is clear that this is not simply a gap, but a break created by
subsequent digging, as the surface level clearly subsides in a concave form at that point (white circle
on Figure 14). Therefore, the 3-D model provides additional information on transformation processes
undergone by the site since its construction, and prevents a potentially erroneous conclusion that this
gap in the wall was part of its initial construction plan.
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4. Discussion

4.1. Combining Processed Data with Fieldwork Data and Looking Beyond Sites

When used in combination and integrated with raw drone imagery and information recorded by
ground-based fieldwork, the processed data detailed in Section 3 can be used to discern and record a
number of further aspects related to the archaeological investigation of the “Black Desert”. On a basic
level, the visualisation of the environmental contexts of each of the sites recorded by drone imagery,
their spatial relationships to each other, and their proximity and accessibility to natural resources
greatly aids large-scale landscape interpretations. One example of this is the region around Site 1745,
which is located on the edge of a hill close to a wadi, a seasonal water source, and natural access
route across the basalt desert. By viewing the orthomosaic in tandem with the DEM of the site’s
environs, its prime position of only 70 m from the wadi, whilst being located on high ground not prone
to flooding and furthermore directly adjacent to a smaller seasonal watercourse becomes apparent
(Figure 15). A closer look at the individual vertical images as well as some oblique drone photographs
additionally shows the presence of linear pathways leading from the hill on which Site 1745 lies to
the wadi, apparently interspersed with regular stone breaks (white arrows on Figures 15 and 16b,c).
Already during the 2017 fieldwork season, this area was visited on the ground and the interpretation
was made that this feature constitutes a path with deliberately placed breaks to create stair treads for
increasing the ease of movement up and down the hill (Figure 16a) [18]. The drone imagery therefore
not only clearly confirms that this hypothesis holds true over the entire trajectory of the path, but also
that the path itself is undoubtedly anthropogenic and not hydrological in origin, as it is located uphill
from the natural course of water along the small valley (black arrows on Figures 15 and 16b,c).
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Figure 16. (a) Ground photograph, (b) vertical drone photograph, and (c) oblique drone photograph
of the environment of Site 1745. The small watercourse (black arrows) and “stepped” anthropogenic
path (white arrows) are highlighted. The same six representative “stair treads” are circled in white on
all images.

Such a visualisation of environmental contexts can also be carried out over multiple sites and
across a large area. This was attempted by conducting a planned drone flight at a location comprising
a 540-m long and between 100 and 160-m wide promontory of basalt desert that extends like a
peninsula into a large qa’a, next to where it is joined by a large wadi. This geographical feature
contains at least six sites, including a “kite”, two different locations of enclosures, one location with
small double-apsed “ghura huts” (see [40] (pp. 179–181)), and eight large cairns likely representing
“tower tombs” (see [41]), two of which are connected by a line of smaller cairns to form a type of
“pendant”. The created orthomosaic visualises the plethora of sites present at this location, doubtless
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desirable due to its accessibility across the qa’a, access to seasonal water from the wadi, and abundant
presence of basalt construction material (Figure 17a). The “tower tombs” in particular were not
recognised on satellite imagery, but first recorded in the field; thus, the orthomosaic proved useful
in retroactively ascertaining their spatial relationships. However, the DEM showed their locations
much more clearly, and additionally provided evidence for further “tower tombs” not recognised in
the field, and thus not visited (black circles on Figure 17b). With the benefit of hindsight, it would have
been beneficial to process the drone data before carrying out the ground fieldwork so as not to miss
out on investigating the full corpus of sites. This therefore showcases another use of drone-derived
data: For planning fieldwork at locations surmised to comprise sites too small to be recognisable on
the highest available resolution of satellite imagery. The orthomosaic and DEM also highlighted a
number of other relationships between sites and their environments, such as the locations of enclosures
exclusively on the edges of the basalt “peninsula” but “tower tombs” and smaller cairns along the
summit of its ridge—a common property of pre-Islamic burial sites in the Harra [41]—and the location
of the “kite” in a depression with its southern long wall running directly along the contour of a hill edge
(black arrows on Figure 17), thus using the natural landscape to its advantage to aid in directing the
movement of wild game into its enclosure—a frequent phenomenon of these features [11] (pp. 54–55).
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Figure 17. (a) Orthomosaic and (b) DEM of a basalt “peninsula” jutting into a large qa’a (to the east)
and wadi (to the west). The eight probable “tower tombs” identified in the field are circled in white,
while three further likely examples subsequently identified on the DEM are circled in black. The line
of smaller cairns connecting two of the “tower tombs” (white arrow) and southern wall of a “kite”
(black arrows) are also highlighted.
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The drone-derived data, and in particular the DEMs, were further found to be useful for the
recognition and mapping of the likely anthropogenic paths across the basalt mentioned in Section 1.
In their 2018 publication on the use of satellite imagery for informing and complementing the WHS
fieldwork, the project directors highlighted the differences between modern roads, “sheep tracks”
caused by the modern movement of livestock, and likely prehistoric paths in terms of trajectory, width,
and connectivity to ancient sites [18] (pp. 12–15). High-resolution DEMs add a new method for
discerning these features from each other due to their differing topographical impacts on the landscape.
To begin with, modern roads can be recognised not only by their greater linearity and width than
other routes, but also by the continuous presence of small hillocks along their entire course, usually
along a single edge (Figure 18). These represent regular piles of basalt stones cleared by bulldozers to
create the roads. More significant, however, is the clear difference in topographic signature between
“sheep tracks” and likely ancient paths, as despite some variances in width and linearity, these can
appear fairly similar on satellite or even drone photographs. A good example can be found at the
“true wheel” Site 1129, around which numerous paths are visible on the orthomosaic, some crossing
and some closely bypassing the site (Figure 19a). However, only one of these produces a clear linear
hollow on the DEM, while the rest appear practically absent in the topography (Figure 19b). This path,
when viewed on very high-resolution satellite imagery, is also the only one that can be traced over a
longer distance, running roughly eastwards via several small qe’an, awdiya, and sites to finally emerge
at a very large qa’a (Figure 20). Whether the topographic signature of this path is entirely due to its
more intensive use over longer periods of time than the “sheep tracks” or is owed in part to increased
hydrological processes due to its greater age and width cannot be ascertained from this remote sensing
data alone. Whichever is the case, however, it speaks for a path that is older, more deliberately created,
and with a more uniformly utilised trajectory than the other ones around Site 1129.
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Figure 20. Satellite image of the landscape east of Site 1129, with the course of the path discernible on
Figure 19b traced (black line). Starting from that site and heading eastwards, it crosses a small qa’a
(white circle), an enclosure site (blue circle), and a second small qa’a (yellow circle) before joining a
slightly larger qa’a and continuing via a wadi (red line) to emerge at a very large qa’a by an “encircled
enclosure cluster” site (green circle).

A further example of this can be found along the walls of “kites”. As the presence of linear
clearances next to these walls is a self-evident necessity due to the removed stones for their construction,
and can be recognised even on high-resolution satellite imagery, the project directors have formerly
argued that they could be used for human circulation across the landscape [18] (p. 15). However,
the clear presence of linear hollows on DEMs next to some of these walls provides concrete evidence
that they have been, and perhaps continue to be, traversed for accessing dense basalt landscapes,
such as around Site 652 (black arrows on Figure 10b). As such, it is reasonable to hypothesise that,
pending further investigation, DEMs could be used to aid the discerning of ancient paths from modern
ones across the Harra, and to determine which kite tails were used as circulation pathways.

Another widely recognised benefit of UAVs is their potential for documenting threats to ancient
sites, and therefore contributing to the monitoring of cultural heritage, e.g., [4,37] and specifically in
Jordan [42]. This is also the case in the Harra, where possible damage to the prehistoric structures usually
comes in the form of bulldozing for road construction or prospective mining activities. Drone imagery
of both individual sites and large areas enables not only the recording of this, but also the rapid
recognition of any alterations in existing threats. Thus, for example, the orthomosaic of Site 1972
(Figure 21) and an oblique photograph of Site 1326 (Figure 22) show the presence of bulldozed tracks
that are in danger of destroying at least part of each site. Since Jordan has a centralised database for
the recording and monitoring of its heritage, called MEGA-Jordan [43], these data can be added to
that system in the form of “Site Monitoring Reports”, providing a clear visualisation of the damage.
Furthermore, should the threat or damage levels have been found to change upon subsequent visits,
the nature and extent of the change can easily be ascertained by carrying out another drone flight and
directly comparing the new imagery with the old.
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Figure 22. Oblique drone photograph of Site 1326 with the modern bulldozer damage and potential
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Finally, one application of the capabilities of a drone that is of particular use in the “Black Desert”
is the documenting of sites that are practically inaccessible on the ground. Traversing the densest
basalt landscape of the Harra is impossible by vehicle and very tiresome on foot, requiring a significant
amount of human effort and project time. Using satellite imagery, it has been possible to plan vehicle
routes to many more locations than expected, but nevertheless around 20% of sites visible on remote
sensing remain over one kilometre away from the nearest vehicle-accessible area [18] (p. 16). By sending
a drone flying over potentially interesting sites (as determined on satellite imagery), the radius of
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“accessible” locations in the dense basalt is increased, in the case of the DJI Phantom 4 to a maximum
of 5 km, depending on the terrain and length of time required to record the sites in question. A good
example of this is Site 652, which has been used several times in this paper to showcase the benefits of
drone-derived data (Section 3; Figures 6a, 10 and 14), but is located around 1300 m from the nearest
place a vehicle can reach. It should be emphasised that recording a site exclusively from the air is
no replacement for an in-tandem ground visit, no matter in how great a detail it can be captured.
However, for the production of data for morphological comparisons and for the planning of potential
ground visits (in other words, determining if the great effort required to reach the site is likely to be
worth it) it is of immense value.

4.2. Future Prospects: Quantification and Statistic Modelling

While the analyses detailed above already provide an in-depth showcase of the great potential
of drone-derived data for the WHS, they are not exhaustive. One of the further possibilities that the
level of detail provided makes feasible, and is currently being worked on, is that of quantifying the
physical shapes of sites. This process would greatly increase the confidence levels of the preliminary
mapping of the purpose, chronology, or culture of human spread across the Harra based on the visual
appearances of sites. For example, even if a statistically significant correlation could be determined
between period of occupation and “true wheels” that differs from that of “encircled enclosure clusters”,
the issue of the subjectivity of categorising any given site as belonging to one or the other type remains.
By selecting specific aspects of these site types that are considered to define them, quantifying these,
and comparing the objective measurements with the perceived categorisations, we can determine the
extent of their subjectivity.

For instance, we can consider one supposed property of “encircled enclosure clusters”: That their
outlines are irregular compared to those of “true wheels”. This would mean that the longest chord
(longest internal straight line from one edge to another) of any site of the former type should show only
a weak correlation to its area—specifically, the area should be relatively smaller when compared to a
hypothetical “true wheel” with the same chord length (Figure 23). Conversely, the longest chords of
the circular or oval “true wheels” ought to show a stronger correlation with their areas. A preliminary
analysis conducted by measuring the parameters in question on the orthomosaics of 38 of these sites
produced promising results. The length of the longest internal chords of “true wheels” do indeed
appear to clearly correlate positively with their areas (with one outlier); conversely, those of “encircled
enclosure clusters” show a weaker correlation, while also being almost consistently relatively longer
(Figure 24). This analysis, and others made possible by the drone-derived data, is to be a focus of the
ongoing WHS project.
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Figure 23. Representative line drawings of (a) a “true wheel” and (b) an “encircled enclosure cluster”,
with their outlines highlighted in blue and longest chord shown in red. It is evident that a hypothetical
“true wheel” of the same chord length as site (b) would have a significantly larger area (as indicated by
the green ellipse), thus this mathematical relationship can be used to attempt to distinguish these site types.
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