Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (525)

Search Parameters:
Keywords = denial-of-service (DoS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 559 KiB  
Review
Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges
by Simeon Ogunbunmi, Yu Chen, Qi Zhao, Deeraj Nagothu, Sixiao Wei, Genshe Chen and Erik Blasch
Future Internet 2025, 17(8), 357; https://doi.org/10.3390/fi17080357 - 6 Aug 2025
Abstract
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful [...] Read more.
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. Full article
Show Figures

Figure 1

35 pages, 5296 KiB  
Article
A Multi-Class Intrusion Detection System for DDoS Attacks in IoT Networks Using Deep Learning and Transformers
by Sheikh Abdul Wahab, Saira Sultana, Noshina Tariq, Maleeha Mujahid, Javed Ali Khan and Alexios Mylonas
Sensors 2025, 25(15), 4845; https://doi.org/10.3390/s25154845 - 6 Aug 2025
Abstract
The rapid proliferation of Internet of Things (IoT) devices has significantly increased vulnerability to Distributed Denial of Service (DDoS) attacks, which can severely disrupt network operations. DDoS attacks in IoT networks disrupt communication and compromise service availability, causing severe operational and economic losses. [...] Read more.
The rapid proliferation of Internet of Things (IoT) devices has significantly increased vulnerability to Distributed Denial of Service (DDoS) attacks, which can severely disrupt network operations. DDoS attacks in IoT networks disrupt communication and compromise service availability, causing severe operational and economic losses. In this paper, we present a Deep Learning (DL)-based Intrusion Detection System (IDS) tailored for IoT environments. Our system employs three architectures—Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), and Transformer-based models—to perform binary, three-class, and 12-class classification tasks on the CiC IoT 2023 dataset. Data preprocessing includes log normalization to stabilize feature distributions and SMOTE-based oversampling to mitigate class imbalance. Experiments on the CIC-IoT 2023 dataset show that, in the binary classification task, the DNN achieved 99.2% accuracy, the CNN 99.0%, and the Transformer 98.8%. In three-class classification (benign, DDoS, and non-DDoS), all models attained near-perfect performance (approximately 99.9–100%). In the 12-class scenario (benign plus 12 attack types), the DNN, CNN, and Transformer reached 93.0%, 92.7%, and 92.5% accuracy, respectively. The high precision, recall, and ROC-AUC values corroborate the efficacy and generalizability of our approach for IoT DDoS detection. Comparative analysis indicates that our proposed IDS outperforms state-of-the-art methods in terms of detection accuracy and efficiency. These results underscore the potential of integrating advanced DL models into IDS frameworks, thereby providing a scalable and effective solution to secure IoT networks against evolving DDoS threats. Future work will explore further enhancements, including the use of deeper Transformer architectures and cross-dataset validation, to ensure robustness in real-world deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 13424 KiB  
Article
A Comprehensive Analysis of Security Challenges in ZigBee 3.0 Networks
by Akbar Ghobakhlou, Duaa Zuhair Al-Hamid, Sara Zandi and James Cato
Sensors 2025, 25(15), 4606; https://doi.org/10.3390/s25154606 - 25 Jul 2025
Viewed by 302
Abstract
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication [...] Read more.
ZigBee, a wireless technology standard for the Internet of Things (IoT) devices based on IEEE 802.15.4, faces significant security challenges that threaten the confidentiality, integrity, and availability of its networks. Despite using 128-bit Advanced Encryption Standard (AES) with symmetric keys for node authentication and data confidentiality, ZigBee’s design constraints, such as low cost and low power, have allowed security issues to persist. While ZigBee 3.0 introduces enhanced security features such as install codes and trust centre link key updates, there remains a lack of empirical research evaluating their effectiveness in real-world deployments. This research addresses the gap by conducting a comprehensive, hardware-based analysis of ZigBee 3.0 networks using XBee 3 radio modules and ZigBee-compatible devices. We investigate the following three core security issues: (a) the security of symmetric keys, focusing on vulnerabilities that could allow attackers to obtain these keys; (b) the impact of compromised symmetric keys on network confidentiality; and (c) susceptibility to Denial-of-Service (DoS) attacks due to insufficient protection mechanisms. Our experiments simulate realistic attack scenarios under both Centralised and Distributed Security Models to assess the protocol’s resilience. The findings reveal that while ZigBee 3.0 improves upon earlier versions, certain vulnerabilities remain exploitable. We also propose practical security controls and best practices to mitigate these attacks and enhance network security. This work contributes novel insights into the operational security of ZigBee 3.0, offering guidance for secure IoT deployments and advancing the understanding of protocol-level defences in constrained environments. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Enhanced Detection of Intrusion Detection System in Cloud Networks Using Time-Aware and Deep Learning Techniques
by Nima Terawi, Huthaifa I. Ashqar, Omar Darwish, Anas Alsobeh, Plamen Zahariev and Yahya Tashtoush
Computers 2025, 14(7), 282; https://doi.org/10.3390/computers14070282 - 17 Jul 2025
Viewed by 353
Abstract
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat [...] Read more.
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat mitigation. We generate real DoS traffic, including normal, Internet Control Message Protocol (ICMP), Smurf attack, and Transmission Control Protocol (TCP) classes, and develop nine predictive algorithms, combining traditional machine learning and advanced deep learning techniques with optimization methods, including the synthetic minority sampling technique (SMOTE) and grid search (GS). Our findings reveal that while traditional machine learning achieved moderate accuracy, it struggled with imbalanced datasets. In contrast, Deep Neural Network (DNN) models showed significant improvements with optimization, with DNN combined with GS (DNN-GS) reaching 89% accuracy. However, we also used Recurrent Neural Networks (RNNs) combined with SMOTE and GS (RNN-SMOTE-GS), which emerged as the best-performing with a precision of 97%, demonstrating the effectiveness of combining SMOTE and GS and highlighting the critical role of advanced optimization techniques in enhancing the detection capabilities of IDS models for the accurate classification of various types of network traffic and attacks. Full article
Show Figures

Figure 1

18 pages, 3585 KiB  
Article
Dynamic Event-Triggered Switching of LFC Scheme Under DoS Attacks Based on a Predictive Model
by De-Tao Guo, Yong-Xin Zhao, Kai-Bo Shi and Ming Zhu
Electronics 2025, 14(14), 2838; https://doi.org/10.3390/electronics14142838 - 15 Jul 2025
Viewed by 214
Abstract
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system [...] Read more.
In this paper, a dynamic event-triggering mechanism (DETM) for load frequency control (LFC) of Denial-of-Service (DoS) attacks based on a predictive model is studied, which has important applications in discrete power systems. Firstly, the prediction model predicts subsequent signals based on observed system states. Secondly, by constructing an improved discrete signal event-triggering scheme, the influence of DoS attacks on the system is weakened. The dynamic trigger condition depends on the past few changes in the system state, rather than real-time sampling values. At the same time, the waiting time of DETM is set to avoid the Zeno phenomenon. Additionally, based on the update period and timestamp technology of the actuator, a control mechanism to resist DoS attacks is implemented in the actuator component. Furthermore, the method uses a double-loop open communication platform to improve reliability and flexibility. Full article
Show Figures

Figure 1

29 pages, 2885 KiB  
Article
Embedding Security Awareness in IoT Systems: A Framework for Providing Change Impact Insights
by Masrufa Bayesh and Sharmin Jahan
Appl. Sci. 2025, 15(14), 7871; https://doi.org/10.3390/app15147871 - 14 Jul 2025
Viewed by 253
Abstract
The Internet of Things (IoT) is rapidly advancing toward increased autonomy; however, the inherent dynamism, environmental uncertainty, device heterogeneity, and diverse data modalities pose serious challenges to its reliability and security. This paper proposes a novel framework for embedding security awareness into IoT [...] Read more.
The Internet of Things (IoT) is rapidly advancing toward increased autonomy; however, the inherent dynamism, environmental uncertainty, device heterogeneity, and diverse data modalities pose serious challenges to its reliability and security. This paper proposes a novel framework for embedding security awareness into IoT systems—where security awareness refers to the system’s ability to detect uncertain changes and understand their impact on its security posture. While machine learning and deep learning (ML/DL) models integrated with explainable AI (XAI) methods offer capabilities for threat detection, they often lack contextual interpretation linked to system security. To bridge this gap, our framework maps XAI-generated explanations to a system’s structured security profile, enabling the identification of components affected by detected anomalies or threats. Additionally, we introduce a procedural method to compute an Importance Factor (IF) for each component, reflecting its operational criticality. This framework generates actionable insights by highlighting contextual changes, impacted components, and their respective IFs. We validate the framework using a smart irrigation IoT testbed, demonstrating its capability to enhance security awareness by tracking evolving conditions and providing real-time insights into potential Distributed Denial of Service (DDoS) attacks. Full article
(This article belongs to the Special Issue Trends and Prospects for Wireless Sensor Networks and IoT)
Show Figures

Figure 1

31 pages, 2736 KiB  
Article
Unseen Attack Detection in Software-Defined Networking Using a BERT-Based Large Language Model
by Mohammed N. Swileh and Shengli Zhang
AI 2025, 6(7), 154; https://doi.org/10.3390/ai6070154 - 11 Jul 2025
Viewed by 640
Abstract
Software-defined networking (SDN) represents a transformative shift in network architecture by decoupling the control plane from the data plane, enabling centralized and flexible management of network resources. However, this architectural shift introduces significant security challenges, as SDN’s centralized control becomes an attractive target [...] Read more.
Software-defined networking (SDN) represents a transformative shift in network architecture by decoupling the control plane from the data plane, enabling centralized and flexible management of network resources. However, this architectural shift introduces significant security challenges, as SDN’s centralized control becomes an attractive target for various types of attacks. While the body of current research on attack detection in SDN has yielded important results, several critical gaps remain that require further exploration. Addressing challenges in feature selection, broadening the scope beyond Distributed Denial of Service (DDoS) attacks, strengthening attack decisions based on multi-flow analysis, and building models capable of detecting unseen attacks that they have not been explicitly trained on are essential steps toward advancing security measures in SDN environments. In this paper, we introduce a novel approach that leverages Natural Language Processing (NLP) and the pre-trained Bidirectional Encoder Representations from Transformers (BERT)-base-uncased model to enhance the detection of attacks in SDN environments. Our approach transforms network flow data into a format interpretable by language models, allowing BERT-base-uncased to capture intricate patterns and relationships within network traffic. By utilizing Random Forest for feature selection, we optimize model performance and reduce computational overhead, ensuring efficient and accurate detection. Attack decisions are made based on several flows, providing stronger and more reliable detection of malicious traffic. Furthermore, our proposed method is specifically designed to detect previously unseen attacks, offering a solution for identifying threats that the model was not explicitly trained on. To rigorously evaluate our approach, we conducted experiments in two scenarios: one focused on detecting known attacks, achieving an accuracy, precision, recall, and F1-score of 99.96%, and another on detecting previously unseen attacks, where our model achieved 99.96% in all metrics, demonstrating the robustness and precision of our framework in detecting evolving threats, and reinforcing its potential to improve the security and resilience of SDN networks. Full article
(This article belongs to the Special Issue Artificial Intelligence for Network Management)
Show Figures

Figure 1

20 pages, 2198 KiB  
Article
Ellipsoidal-Set Design of Robust and Secure Control Against Denial-of-Service Cyber Attacks in Electric-Vehicle Induction Motor Drives
by Ehab H. E. Bayoumi, Hisham M. Soliman and Sangkeum Lee
Technologies 2025, 13(7), 289; https://doi.org/10.3390/technologies13070289 - 7 Jul 2025
Viewed by 260
Abstract
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This [...] Read more.
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This flow could be broken by a DoS attack, which could result in unstable motor operation or complete drive system failure. To address this, we propose a novel ellipsoidal-set-based state feedback controller with integral action, formulated via linear matrix inequalities (LMIs). This controller improves disturbance rejection, maintains system stability under DoS-induced input disruptions, and enhances security by constraining the system response within a bounded invariant set. The proposed tracker has a faster dynamic reaction and better disturbance attenuation capabilities than the traditional H control method. The effectiveness of the proposed controller is validated through a series of diverse testing scenarios. Full article
(This article belongs to the Special Issue Smart Transportation and Driving)
Show Figures

Figure 1

21 pages, 4241 KiB  
Article
Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy Preserving and Real-Time Threat Detection Capabilities
by Milad Rahmati and Antonino Pagano
Informatics 2025, 12(3), 62; https://doi.org/10.3390/informatics12030062 - 4 Jul 2025
Cited by 1 | Viewed by 832
Abstract
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed industries but also exposed significant cybersecurity vulnerabilities. Traditional centralized methods for securing IoT networks struggle to balance privacy preservation with real-time threat detection. This study presents a Federated Learning-Driven Cybersecurity Framework [...] Read more.
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed industries but also exposed significant cybersecurity vulnerabilities. Traditional centralized methods for securing IoT networks struggle to balance privacy preservation with real-time threat detection. This study presents a Federated Learning-Driven Cybersecurity Framework designed for IoT environments, enabling decentralized data processing through local model training on edge devices to ensure data privacy. Secure aggregation using homomorphic encryption supports collaborative learning without exposing sensitive information. The framework employs GRU-based recurrent neural networks (RNNs) for anomaly detection, optimized for resource-constrained IoT networks. Experimental results demonstrate over 98% accuracy in detecting threats such as distributed denial-of-service (DDoS) attacks, with a 20% reduction in energy consumption and a 30% reduction in communication overhead, showcasing the framework’s efficiency over traditional centralized approaches. This work addresses critical gaps in IoT cybersecurity by integrating federated learning with advanced threat detection techniques. It offers a scalable, privacy-preserving solution for diverse IoT applications, with future directions including blockchain integration for model aggregation traceability and quantum-resistant cryptography to enhance security. Full article
Show Figures

Figure 1

17 pages, 2101 KiB  
Article
Enhancing DDoS Attacks Mitigation Using Machine Learning and Blockchain-Based Mobile Edge Computing in IoT
by Mahmoud Chaira, Abdelkader Belhenniche and Roman Chertovskih
Computation 2025, 13(7), 158; https://doi.org/10.3390/computation13070158 - 1 Jul 2025
Viewed by 454
Abstract
The widespread adoption of Internet of Things (IoT) devices has been accompanied by a remarkable rise in both the frequency and intensity of Distributed Denial of Service (DDoS) attacks, which aim to overwhelm and disrupt the availability of networked systems and connected infrastructures. [...] Read more.
The widespread adoption of Internet of Things (IoT) devices has been accompanied by a remarkable rise in both the frequency and intensity of Distributed Denial of Service (DDoS) attacks, which aim to overwhelm and disrupt the availability of networked systems and connected infrastructures. In this paper, we present a novel approach to DDoS attack detection and mitigation that integrates state-of-the-art machine learning techniques with Blockchain-based Mobile Edge Computing (MEC) in IoT environments. Our solution leverages the decentralized and tamper-resistant nature of Blockchain technology to enable secure and efficient data collection and processing at the network edge. We evaluate multiple machine learning models, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Transformer architectures, and LightGBM, using the CICDDoS2019 dataset. Our results demonstrate that Transformer models achieve a superior detection accuracy of 99.78%, while RF follows closely with 99.62%, and LightGBM offers optimal efficiency for real-time detection. This integrated approach significantly enhances detection accuracy and mitigation effectiveness compared to existing methods, providing a robust and adaptive mechanism for identifying and mitigating malicious traffic patterns in IoT environments. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

37 pages, 18679 KiB  
Article
Real-Time DDoS Detection in High-Speed Networks: A Deep Learning Approach with Multivariate Time Series
by Drixter V. Hernandez, Yu-Kuen Lai and Hargyo T. N. Ignatius
Electronics 2025, 14(13), 2673; https://doi.org/10.3390/electronics14132673 - 1 Jul 2025
Viewed by 516
Abstract
The exponential growth of Distributed Denial-of-Service (DDoS) attacks in high-speed networks presents significant real-time detection and mitigation challenges. The existing detection frameworks are categorized into flow-based and packet-based detection approaches. Flow-based approaches usually suffer from high latency and controller overhead in high-volume traffic. [...] Read more.
The exponential growth of Distributed Denial-of-Service (DDoS) attacks in high-speed networks presents significant real-time detection and mitigation challenges. The existing detection frameworks are categorized into flow-based and packet-based detection approaches. Flow-based approaches usually suffer from high latency and controller overhead in high-volume traffic. In contrast, packet-based approaches are prone to high false-positive rates and limited attack classification, resulting in delayed mitigation responses. To address these limitations, we propose a real-time DDoS detection architecture that combines hardware-accelerated statistical preprocessing with GPU-accelerated deep learning models. The raw packet header information is transformed into multivariate time series data to enable classification of complex traffic patterns using Temporal Convolutional Networks (TCN), Long Short-Term Memory (LSTM) networks, and Transformer architectures. We evaluated the proposed system using experiments conducted under low to high-volume background traffic to validate each model’s robustness and adaptability in a real-time network environment. The experiments are conducted across different time window lengths to determine the trade-offs between detection accuracy and latency. The results show that larger observation windows improve detection accuracy using TCN and LSTM models and consistently outperform the Transformer in high-volume scenarios. Regarding model latency, TCN and Transformer exhibit constant latency across all window sizes. We also used SHAP (Shapley Additive exPlanations) analysis to identify the most discriminative traffic features, enhancing model interpretability and supporting feature selection for computational efficiency. Among the experimented models, TCN achieves the most balance between detection performance and latency, making it an applicable model for the proposed architecture. These findings validate the feasibility of the proposed architecture and support its potential as a real-time DDoS detection application in a realistic high-speed network. Full article
(This article belongs to the Special Issue Emerging Technologies for Network Security and Anomaly Detection)
Show Figures

Figure 1

21 pages, 2109 KiB  
Article
Securing IoT Communications via Anomaly Traffic Detection: Synergy of Genetic Algorithm and Ensemble Method
by Behnam Seyedi and Octavian Postolache
Sensors 2025, 25(13), 4098; https://doi.org/10.3390/s25134098 - 30 Jun 2025
Viewed by 318
Abstract
The rapid growth of the Internet of Things (IoT) has revolutionized various industries by enabling interconnected devices to exchange data seamlessly. However, IoT systems face significant security challenges due to decentralized architectures, resource-constrained devices, and dynamic network environments. These challenges include denial-of-service (DoS) [...] Read more.
The rapid growth of the Internet of Things (IoT) has revolutionized various industries by enabling interconnected devices to exchange data seamlessly. However, IoT systems face significant security challenges due to decentralized architectures, resource-constrained devices, and dynamic network environments. These challenges include denial-of-service (DoS) attacks, anomalous network behaviors, and data manipulation, which threaten the security and reliability of IoT ecosystems. New methods based on machine learning have been reported in the literature, addressing topics such as intrusion detection and prevention. This paper proposes an advanced anomaly detection framework for IoT networks expressed in several phases. In the first phase, data preprocessing is conducted using techniques like the Median-KS Test to remove noise, handle missing values, and balance datasets, ensuring a clean and structured input for subsequent phases. The second phase focuses on optimal feature selection using a Genetic Algorithm enhanced with eagle-inspired search strategies. This approach identifies the most significant features, reduces dimensionality, and enhances computational efficiency without sacrificing accuracy. In the final phase, an ensemble classifier combines the strengths of the Decision Tree, Random Forest, and XGBoost algorithms to achieve the accurate and robust detection of anomalous behaviors. This multi-step methodology ensures adaptability and scalability in handling diverse IoT scenarios. The evaluation results demonstrate the superiority of the proposed framework over existing methods. It achieves a 12.5% improvement in accuracy (98%), a 14% increase in detection rate (95%), a 9.3% reduction in false positive rate (10%), and a 10.8% decrease in false negative rate (5%). These results underscore the framework’s effectiveness, reliability, and scalability for securing real-world IoT networks against evolving cyber threats. Full article
Show Figures

Figure 1

29 pages, 838 KiB  
Article
Blockchain-Based Secure Authentication Protocol for Fog-Enabled IoT Environments
by Taehun Kim, Deokkyu Kwon, Yohan Park and Youngho Park
Mathematics 2025, 13(13), 2142; https://doi.org/10.3390/math13132142 - 30 Jun 2025
Viewed by 289
Abstract
Fog computing technology grants computing and storage resources to nearby IoT devices, enabling a fast response and ensuring data locality. Thus, fog-enabled IoT environments provide real-time and convenient services to users in healthcare, agriculture, and road traffic monitoring. However, messages are exchanged on [...] Read more.
Fog computing technology grants computing and storage resources to nearby IoT devices, enabling a fast response and ensuring data locality. Thus, fog-enabled IoT environments provide real-time and convenient services to users in healthcare, agriculture, and road traffic monitoring. However, messages are exchanged on public channels, which can be targeted to various security attacks. Hence, secure authentication protocols are critical for reliable fog-enabled IoT services. In 2024, Harbi et al. proposed a remote user authentication protocol for fog-enabled IoT environments. They claimed that their protocol can resist various security attacks and ensure session key secrecy. Unfortunately, we have identified several vulnerabilities in their protocol, including to insider, denial of service (DoS), and stolen verifier attacks. We also prove that their protocol does not ensure user untraceability and that it has an authentication problem. To address the security problems of their protocol, we propose a security-enhanced blockchain-based secure authentication protocol for fog-enabled IoT environments. We demonstrate the security robustness of the proposed protocol via informal and formal analyses, including Burrows–Abadi–Needham (BAN) logic, the Real-or-Random (RoR) model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) simulation. Moreover, we compare the proposed protocol with related protocols to demonstrate the excellence of the proposed protocol in terms of efficiency and security. Finally, we conduct simulations using NS-3 to verify its real-world applicability. Full article
(This article belongs to the Special Issue Advances in Mobile Network and Intelligent Communication)
Show Figures

Figure 1

29 pages, 2303 KiB  
Article
Denial-of-Service Attacks on Permissioned Blockchains: A Practical Study
by Mohammad Pishdar, Yixing Lei, Khaled Harfoush and Jawad Manzoor
J. Cybersecur. Priv. 2025, 5(3), 39; https://doi.org/10.3390/jcp5030039 - 30 Jun 2025
Viewed by 729
Abstract
Hyperledger Fabric (HLF) is a leading permissioned blockchain platform designed for enterprise applications. However, it faces significant security risks from Denial-of-Service (DoS) attacks targeting its core components. This study systematically investigated network-level DoS attack vectors against HLF, with a focus on threats to [...] Read more.
Hyperledger Fabric (HLF) is a leading permissioned blockchain platform designed for enterprise applications. However, it faces significant security risks from Denial-of-Service (DoS) attacks targeting its core components. This study systematically investigated network-level DoS attack vectors against HLF, with a focus on threats to its ordering service, Membership Service Provider (MSP), peer nodes, consensus protocols, and architectural dependencies. In this research, we performed experiments on an HLF test bed to demonstrate how compromised components can be exploited to launch DoS attacks and degrade the performance and availability of the blockchain network. Key attack scenarios included manipulating block sizes to induce latency, discarding blocks to disrupt consensus, issuing malicious certificates via MSP, colluding peers to sabotage validation, flooding external clients to overwhelm resources, misconfiguring Raft consensus parameters, and disabling CouchDB to cripple data access. The experimental results reveal severe impacts on the availability, including increased latency, decreased throughput, and inaccessibility of the ledger. Our findings emphasize the need for proactive monitoring and robust defense mechanisms to detect and mitigate DoS threats. Finally, we discuss some future research directions, including lightweight machine learning tailored to HLF, enhanced monitoring by aggregating logs from multiple sources, and collaboration with industry stakeholders to deploy pilot studies of security-enhanced HLF in operational environments. Full article
(This article belongs to the Special Issue Cyber Security and Digital Forensics—2nd Edition)
Show Figures

Figure 1

16 pages, 499 KiB  
Article
Adaptive Sampling Framework for Imbalanced DDoS Traffic Classification
by Hongjoong Kim, Deokhyeon Ham and Kyoung-Sook Moon
Sensors 2025, 25(13), 3932; https://doi.org/10.3390/s25133932 - 24 Jun 2025
Viewed by 448
Abstract
Imbalanced data is a major challenge in network security applications, particularly in DDoS (Distributed Denial of Service) traffic classification, where detecting minority classes is critical for timely and cost-effective defense. Existing machine learning and deep learning models often fail to accurately classify such [...] Read more.
Imbalanced data is a major challenge in network security applications, particularly in DDoS (Distributed Denial of Service) traffic classification, where detecting minority classes is critical for timely and cost-effective defense. Existing machine learning and deep learning models often fail to accurately classify such underrepresented attack types, leading to significant degradation in performance. In this study, we propose an adaptive sampling strategy that combines oversampling and undersampling techniques to address the class imbalance problem at the data level. We evaluated our approach using benchmark DDoS traffic datasets, where it demonstrated improved classification performance across key metrics, including accuracy, recall, and F1-score, compared to baseline models and conventional sampling methods. The results indicate that the proposed adaptive sampling approach improved minority class detection performance under the tested conditions, thereby improving the reliability of sensor-driven security systems. This work contributes a robust and adaptable method for imbalanced data classification, with potential applications across simulated sensor environments where anomaly detection is essential. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

Back to TopTop