Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = cystine knot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 733 KiB  
Review
Bimekizumab in the Treatment of Axial Spondyloarthritis and Psoriatic Arthritis: A New Kid on the Block
by Julie Sarrand, Laurie Baglione, Charlotte Bouvy and Muhammad Soyfoo
Int. J. Mol. Sci. 2025, 26(5), 2315; https://doi.org/10.3390/ijms26052315 - 5 Mar 2025
Viewed by 2093
Abstract
The interleukin (IL)-17 family encompasses six structurally related pro-inflammatory cystine knot proteins, designated as IL-17A to IL-17F. Over the last decades, evidence has pointed to its role as a critical player in the development of inflammatory diseases such as psoriasis (PsO), axial spondyloarthritis [...] Read more.
The interleukin (IL)-17 family encompasses six structurally related pro-inflammatory cystine knot proteins, designated as IL-17A to IL-17F. Over the last decades, evidence has pointed to its role as a critical player in the development of inflammatory diseases such as psoriasis (PsO), axial spondyloarthritis (axSpA), and psoriatic arthritis (PsA). More specifically, IL-17A and IL-17F are overexpressed in the skin and synovial tissues of patients with these diseases, and recent studies suggest their involvement in promoting inflammation and tissue damage in axSpA and PsA. Bimekizumab is a monoclonal antibody targeting both IL-17A and IL-17F, playing an important role in the treatment of these diseases. This review details the implications of bimekizumab in the therapeutic armamentarium of axSpA and PsA. Full article
(This article belongs to the Special Issue Drug Repurposing: Emerging Approaches to Drug Discovery)
Show Figures

Figure 1

22 pages, 1771 KiB  
Review
Fifty Years of Animal Toxin Research at the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
by Victor Tsetlin, Irina Shelukhina, Sergey Kozlov and Igor Kasheverov
Int. J. Mol. Sci. 2023, 24(18), 13884; https://doi.org/10.3390/ijms241813884 - 9 Sep 2023
Cited by 2 | Viewed by 2168
Abstract
This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins [...] Read more.
This review covers briefly the work carried out at our institute (IBCh), in many cases in collaboration with other Russian and foreign laboratories, for the last 50 years. It discusses the discoveries and studies of various animal toxins, including protein and peptide neurotoxins acting on the nicotinic acetylcholine receptors (nAChRs) and on other ion channels. Among the achievements are the determination of the primary structures of the α-bungarotoxin-like three-finger toxins (TFTs), covalently bound dimeric TFTs, glycosylated cytotoxin, inhibitory cystine knot toxins (ICK), modular ICKs, and such giant molecules as latrotoxins and peptide neurotoxins from the snake, as well as from other animal venoms. For a number of toxins, spatial structures were determined, mostly by 1H-NMR spectroscopy. Using this method in combination with molecular modeling, the molecular mechanisms of the interactions of several toxins with lipid membranes were established. In more detail are presented the results of recent years, among which are the discovery of α-bungarotoxin analogs distinguishing the two binding sites in the muscle-type nAChR, long-chain α-neurotoxins interacting with α9α10 nAChRs and with GABA-A receptors, and the strong antiviral effects of dimeric phospholipases A2. A summary of the toxins obtained from arthropod venoms includes only highly cited works describing the molecules’ success story, which is associated with IBCh. In marine animals, versatile toxins in terms of structure and molecular targets were discovered, and careful work on α-conotoxins differing in specificity for individual nAChR subtypes gave information about their binding sites. Full article
Show Figures

Figure 1

14 pages, 2338 KiB  
Article
Two Novel Mosquitocidal Peptides Isolated from the Venom of the Bahia Scarlet Tarantula (Lasiodora klugi)
by Jamila Ahmed, Andrew A. Walker, Hugo D. Perdomo, Shaodong Guo, Samantha A. Nixon, Irina Vetter, Hilary I. Okoh, Dalhatu M. Shehu, Mohammed N. Shuaibu, Iliya S. Ndams, Glenn F. King and Volker Herzig
Toxins 2023, 15(7), 418; https://doi.org/10.3390/toxins15070418 - 27 Jun 2023
Cited by 1 | Viewed by 2992
Abstract
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore [...] Read more.
Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed β-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti. Full article
Show Figures

Figure 1

24 pages, 8927 KiB  
Article
Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer
by Ekaterina N. Lyukmanova, Pavel A. Mironov, Dmitrii S. Kulbatskii, Mikhail A. Shulepko, Alexander S. Paramonov, Elizaveta M. Chernaya, Yulia A. Logashina, Yaroslav A. Andreev, Mikhail P. Kirpichnikov and Zakhar O. Shenkarev
Toxins 2023, 15(6), 378; https://doi.org/10.3390/toxins15060378 - 3 Jun 2023
Cited by 7 | Viewed by 3766
Abstract
Phα1β (PnTx3–6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. [...] Read more.
Phα1β (PnTx3–6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1β and its 15N-labeled analogue. Spatial structure and dynamics of Phα1β were determined via NMR spectroscopy. The N-terminal domain (Ala1–Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41–Cys52) stapled to ICK by two disulfides exhibits the µs–ms time-scale fluctuations. The Phα1β structure with the disulfide bond patterns Cys1–5, Cys2–7, Cys3–12, Cys4–10, Cys6–11, Cys8–9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1β has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1β significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1β as a gating modifier toxin, probably interacting with S1–S4 gating domains from a membrane-bound state. Full article
(This article belongs to the Special Issue Ion Channels, Venom, and Toxins)
Show Figures

Figure 1

17 pages, 4182 KiB  
Article
Killer Knots: Molecular Evolution of Inhibitor Cystine Knot Toxins in Wandering Spiders (Araneae: Ctenidae)
by Michael S. Brewer and T. Jeffrey Cole
Toxins 2023, 15(2), 112; https://doi.org/10.3390/toxins15020112 - 28 Jan 2023
Cited by 3 | Viewed by 3150
Abstract
Venom expressed by the nearly 50,000 species of spiders on Earth largely remains an untapped reservoir of a diverse array of biomolecules with potential for pharmacological and agricultural applications. A large fraction of the noxious components of spider venoms are a functionally diverse [...] Read more.
Venom expressed by the nearly 50,000 species of spiders on Earth largely remains an untapped reservoir of a diverse array of biomolecules with potential for pharmacological and agricultural applications. A large fraction of the noxious components of spider venoms are a functionally diverse family of structurally related polypeptides with an inhibitor cystine knot (ICK) motif. The cysteine-rich nature of these toxins makes structural elucidation difficult, and most studies have focused on venom components from the small handful of medically relevant spider species such as the highly aggressive Brazilian wandering spider Phoneutria nigriventer. To alleviate difficulties associated with the study of ICK toxins in spiders, we devised a comprehensive approach to explore the evolutionary patterns that have shaped ICK functional diversification using venom gland transcriptomes and proteomes from phylogenetically distinct lineages of wandering spiders and their close relatives. We identified 626 unique ICK toxins belonging to seven topological elaborations. Phylogenetic tests of episodic diversification revealed distinct regions between cysteine residues that demonstrated differential evidence of positive or negative selection, which may have structural implications towards the specificity and efficacy of these toxins. Increased taxon sampling and whole genome sequencing will provide invaluable insights to further understand the evolutionary processes that have given rise to this diverse class of toxins. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

18 pages, 3895 KiB  
Article
Peptides from the Sea Anemone Metridium senile with Modified Inhibitor Cystine Knot (ICK) Fold Inhibit Nicotinic Acetylcholine Receptors
by Igor E. Kasheverov, Yulia A. Logashina, Fedor D. Kornilov, Vladislav A. Lushpa, Ekaterina E. Maleeva, Yuliya V. Korolkova, Jinpeng Yu, Xiaopeng Zhu, Dongting Zhangsun, Sulan Luo, Klara Stensvåg, Denis S. Kudryavtsev, Konstantin S. Mineev and Yaroslav A. Andreev
Toxins 2023, 15(1), 28; https://doi.org/10.3390/toxins15010028 - 30 Dec 2022
Cited by 11 | Viewed by 3370
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in the functioning of the central and peripheral nervous systems, and other organs of living creatures. There are several subtypes of nAChRs, and almost all of them are considered as pharmacological targets in different pathological [...] Read more.
Nicotinic acetylcholine receptors (nAChRs) play an important role in the functioning of the central and peripheral nervous systems, and other organs of living creatures. There are several subtypes of nAChRs, and almost all of them are considered as pharmacological targets in different pathological states. The crude venom of the sea anemone Metridium senile showed the ability to interact with nAChRs. Four novel peptides (Ms11a-1–Ms11a-4) with nAChR binding activity were isolated. These peptides stabilized by three disulfide bridges have no noticeable homology with any known peptides. Ms11a-1–Ms11a-4 showed different binding activity towards the muscle-type nAChR from the Torpedo californica ray. The study of functional activity and selectivity for the most potent peptide (Ms11a-3) revealed the highest antagonism towards the heterologous rat α9α10 nAChR compared to the muscle and α7 receptors. Structural NMR analysis of two toxins (Ms11a-2 and Ms11a-3) showed that they belong to a new variant of the inhibitor cystine knot (ICK) fold but have a prolonged loop between the fifth and sixth cysteine residues. Peptides Ms11a-1–Ms11a-4 could represent new pharmacological tools since they have structures different from other known nAChRs inhibitors. Full article
(This article belongs to the Special Issue Ion Channels, Venom, and Toxins)
Show Figures

Figure 1

26 pages, 2207 KiB  
Review
Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines
by Francis Alfred Attah, Bilqis Abiola Lawal, Abdulmalik Babatunde Yusuf, Oluwakorede Joshua Adedeji, Joy Temiloluwa Folahan, Kelvin Oluwafemi Akhigbe, Tithi Roy, Azeemat Adeola Lawal, Ngozi Blessing Ogah, Olufunke Esan Olorundare and Jean Christopher Chamcheu
Plants 2022, 11(23), 3271; https://doi.org/10.3390/plants11233271 - 28 Nov 2022
Cited by 6 | Viewed by 4146
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional [...] Read more.
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 2869 KiB  
Article
Effects of Substitution Ratios of Zinc-Substituted Hydroxyapatite on Adsorption and Desorption Behaviors of Bone Morphogenetic Protein-2
by Baolin Huang, Manchun Li, Hailing Mo, Chuang Chen and Kun Chen
Int. J. Mol. Sci. 2022, 23(17), 10144; https://doi.org/10.3390/ijms231710144 - 4 Sep 2022
Cited by 6 | Viewed by 2198
Abstract
Understanding interactions between bone morphogenetic proteins (BMPs) and biomaterials is of great significance in preserving the structure and bioactivity of BMPs when utilized in clinical applications. Currently, bone morphogenetic protein-2 (BMP-2) is one of the most important growth factors in bone tissue engineering; [...] Read more.
Understanding interactions between bone morphogenetic proteins (BMPs) and biomaterials is of great significance in preserving the structure and bioactivity of BMPs when utilized in clinical applications. Currently, bone morphogenetic protein-2 (BMP-2) is one of the most important growth factors in bone tissue engineering; however, atomistic interactions between BMP-2 and zinc-substituted hydroxyapatite (Zn-HAP, commonly used in artificial bone implants) have not been well clarified until now. Thus, in this work, the interaction energies, binding/debinding states, and molecular structures of BMP-2 upon a series of Zn-HAP surfaces (Zn-HAPs, 1 at%, 2.5 at%, 5 at%, and 10 at% substitution) were investigated by hybrid molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. Meanwhile, cellular studies including alkaline phosphatase (ALP) activity and reverse transcription-polymerase chain reaction (RT-PCR) assay were performed to verify the theoretical modeling findings. It was found that, compared to pure HAP, Zn-HAPs exhibited a higher binding affinity of BMP-2 at the adsorption process; meanwhile, the detachment of BMP-2 upon Zn-HAPs was more difficult at the desorption process. In addition, molecular structures of BMP-2 could be well stabilized upon Zn-HAPs, especially for Zn10-HAP (with a 10 at% substitution), which showed both the higher stability of cystine-knots and less change in the secondary structures of BMP-2 than those upon HAP. Cellular studies confirmed that higher ALP activity and osteogenic marker gene expression were achieved upon BMP-2/Zn-HAPs than those upon BMP-2/HAP. These findings verified that Zn-HAPs favor the adsorption of BMP-2 and leverage the bioactivity of BMP-2. Together, this work clarified the interaction mechanisms between BMP-2 and Zn-HAPs at the atom level, which could provide new molecular-level insights into the design of BMP-2-loaded biomaterials for bone tissue engineering. Full article
Show Figures

Graphical abstract

9 pages, 1568 KiB  
Article
Kinetics of Odorant Recognition with a Graphene-Based Olfactory Receptor Mimicry
by Caroline Bonazza and Klaus Bonazza
Chemosensors 2022, 10(6), 203; https://doi.org/10.3390/chemosensors10060203 - 27 May 2022
Viewed by 2232
Abstract
Malaria vector mosquito species rely on a handful of specific pheromones for mating; one of them, sulcatone (6-methyl-5-hepten-2-one), is also found in human exudation. Therefore, a complete understanding of the insect’s olfaction, and rapid real-time methods for odorant detection, are required. Here, we [...] Read more.
Malaria vector mosquito species rely on a handful of specific pheromones for mating; one of them, sulcatone (6-methyl-5-hepten-2-one), is also found in human exudation. Therefore, a complete understanding of the insect’s olfaction, and rapid real-time methods for odorant detection, are required. Here, we mimic the odorant recognition of the nerve cells of an insect’s antenna with a synthetic graphene-based bio-electro-interfacial odorant receptor. By this means, we obtain the kinetics of the genuine odorant recognition reaction and compare them to electro-antennogram data that represent the more complex scenario of a living insect. The odorant-binding proteins OBP 9A and 9B only associate with their ligands weakly, showing KDs of between 2.1 mM and 3 mM, while the binding kinetics of OBP proteins depend on the structural feature of a cystine knot and are modulated by the local milieu within a protein-aided enhancement zone. Full article
(This article belongs to the Special Issue Nanomaterials Based on Bio/Chemical Sensors)
Show Figures

Figure 1

10 pages, 1343 KiB  
Article
Production and Biochemical Characterization of Dimeric Recombinant Gremlin-1
by Stefania Mitola, Cosetta Ravelli, Michela Corsini, Alessandra Gianoncelli, Federico Galvagni, Kurt Ballmer-Hofer, Marco Presta and Elisabetta Grillo
Int. J. Mol. Sci. 2022, 23(3), 1151; https://doi.org/10.3390/ijms23031151 - 21 Jan 2022
Cited by 6 | Viewed by 2794
Abstract
Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis [...] Read more.
Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities. Full article
(This article belongs to the Special Issue Recombinant Proteins 2.0)
Show Figures

Figure 1

18 pages, 6378 KiB  
Article
TmSpz-like Plays a Fundamental Role in Response to E. coli but Not S. aureus or C. albican Infection in Tenebrio molitor via Regulation of Antimicrobial Peptide Production
by Ho Am Jang, Bharat Bhusan Patnaik, Maryam Ali Mohammadie Kojour, Bo Bae Kim, Young Min Bae, Ki Beom Park, Yong Seok Lee, Yong Hun Jo and Yeon Soo Han
Int. J. Mol. Sci. 2021, 22(19), 10888; https://doi.org/10.3390/ijms221910888 - 8 Oct 2021
Cited by 18 | Viewed by 3657
Abstract
The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses [...] Read more.
The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 3.0)
Show Figures

Figure 1

17 pages, 3834 KiB  
Article
Anti-Fungal Hevein-like Peptides Biosynthesized from Quinoa Cleavable Hololectins
by Shining Loo, Stephanie V. Tay, Antony Kam, Fan Tang, Jing-Song Fan, Daiwen Yang and James P. Tam
Molecules 2021, 26(19), 5909; https://doi.org/10.3390/molecules26195909 - 29 Sep 2021
Cited by 24 | Viewed by 3343
Abstract
Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying [...] Read more.
Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29–31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Products)
Show Figures

Graphical abstract

13 pages, 4163 KiB  
Article
Enabling Efficient Folding and High-Resolution Crystallographic Analysis of Bracelet Cyclotides
by Yen-Hua Huang, Qingdan Du, Zhihao Jiang, Gordon J. King, Brett M. Collins, Conan K. Wang and David J. Craik
Molecules 2021, 26(18), 5554; https://doi.org/10.3390/molecules26185554 - 13 Sep 2021
Cited by 18 | Viewed by 2998
Abstract
Cyclotides have attracted great interest as drug design scaffolds because of their unique cyclic cystine knotted topology. They are classified into three subfamilies, among which the bracelet subfamily represents the majority and comprises the most bioactive cyclotides, but are the most poorly utilized [...] Read more.
Cyclotides have attracted great interest as drug design scaffolds because of their unique cyclic cystine knotted topology. They are classified into three subfamilies, among which the bracelet subfamily represents the majority and comprises the most bioactive cyclotides, but are the most poorly utilized in drug design applications. A long-standing challenge has been the very low in vitro folding yields of bracelets, hampering efforts to characterize their structures and activities. Herein, we report substantial increases in bracelet folding yields enabled by a single point mutation of residue Ile-11 to Leu or Gly. We applied this discovery to synthesize mirror image enantiomers and used quasi-racemic crystallography to elucidate the first crystal structures of bracelet cyclotides. This study provides a facile strategy to produce bracelet cyclotides, leading to a general method to easily access their atomic resolution structures and providing a basis for development of biotechnological applications. Full article
(This article belongs to the Special Issue A Themed Issue Dedicated to Professor Victor Hruby)
Show Figures

Graphical abstract

13 pages, 2751 KiB  
Article
Stability and Safety of Inhibitor Cystine Knot Peptide, GTx1-15, from the Tarantula Spider Grammostola rosea
by Tadashi Kimura
Toxins 2021, 13(9), 621; https://doi.org/10.3390/toxins13090621 - 3 Sep 2021
Cited by 12 | Viewed by 4094
Abstract
Inhibitor cystine knot (ICK) peptides are knotted peptides with three intramolecular disulfide bonds that affect several types of ion channels. Some are proteolytically stable and are promising scaffolds for drug development. GTx1-15 is an ICK peptide that inhibits the voltage-dependent calcium channel Ca [...] Read more.
Inhibitor cystine knot (ICK) peptides are knotted peptides with three intramolecular disulfide bonds that affect several types of ion channels. Some are proteolytically stable and are promising scaffolds for drug development. GTx1-15 is an ICK peptide that inhibits the voltage-dependent calcium channel Cav3.1 and the voltage-dependent sodium channels Nav1.3 and Nav1.7. As a model molecule to develop an ICK peptide drug, we investigated several important pharmaceutical characteristics of GTx1-15. The stability of GTx1-15 in rat and human blood plasma was examined, and no GTx1-15 degradation was observed in either rat or human blood plasma for 24 h in vitro. GTx1-15 in blood circulation was detected for several hours after intravenous and intramuscular administration, indicating high stability in plasma. The thermal stability of GTx1-15 as examined by high thermal incubation and protein thermal shift assays indicated that GTx1-15 possesses high heat stability. The cytotoxicity and immunogenicity of GTx1-15 were examined using the human monocytic leukemia cell line THP-1. GTx1-15 showed no cytotoxicity or immunogenicity even at high concentrations. These results indicate that GTx1-15 itself is suitable for peptide drug development and as a peptide library scaffold. Full article
(This article belongs to the Special Issue Toxinologic and Pharmacological Investigation of Venomous Arthropods)
Show Figures

Figure 1

25 pages, 4898 KiB  
Article
Hexapod Assassins’ Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus
by Nicolai Rügen, Timothy P. Jenkins, Natalie Wielsch, Heiko Vogel, Benjamin-Florian Hempel, Roderich D. Süssmuth, Stuart Ainsworth, Alejandro Cabezas-Cruz, Andreas Vilcinskas and Miray Tonk
Biomedicines 2021, 9(7), 819; https://doi.org/10.3390/biomedicines9070819 - 14 Jul 2021
Cited by 14 | Viewed by 6573
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. [...] Read more.
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications. Full article
(This article belongs to the Special Issue Recent Advances in the Discovery of Novel Drugs on Natural Molecules)
Show Figures

Graphical abstract

Back to TopTop