Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = cysteine-S-sulfate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5953 KiB  
Article
Evaluation of the Functional Properties and Edible Safety of Concocted Xanthii Fructus Protein
by Yuchen Dong, Zihao Wan, Fuguo Han, Xuemei Fan, Yanli Hao, Fang Wei and Qingfei Liu
Foods 2025, 14(11), 1913; https://doi.org/10.3390/foods14111913 - 28 May 2025
Viewed by 544
Abstract
Xanthii Fructus (XF) not only has medicinal function in traditional Chinese medicine (TCM) but also contains rich oil and protein. The aim of this research was to develop the edible value of its protein based on the investigation on the extraction, basic characteristics [...] Read more.
Xanthii Fructus (XF) not only has medicinal function in traditional Chinese medicine (TCM) but also contains rich oil and protein. The aim of this research was to develop the edible value of its protein based on the investigation on the extraction, basic characteristics and functions, safety, gut microbiota, and metabolomics, especially the effect of the concocting process. The proteins from raw and concocted XF were prepared using two methods: alkaline solubilization followed by acid precipitation and ammonium sulfate salting-out, respectively. The secondary structure and physicochemical properties of the proteins were characterized through spectroscopic analysis and property determination. The effects of alkaline and the concocting process on the proteins were systematically compared. The results indicated that the salting-out method could retain the protein activity better. Both alkali treatment and the concocting process altered the folding state of proteins. The toxicological results in mice indicated that a high dose (0.35 g/kg) of raw Xanthii Fructus protein (XFP) might cause damage to the liver and small intestine, and the concocting process could significantly alleviate the damage. The 16S rRNA sequencing technology was used to untangle their impact on gut microbiota in mice and the result showed that raw protein had a certain regulatory effect on Bifidobacterium, Rhodococcus, Lactococcus, and Clostridium, while the concocted protein had a smaller impact, mainly affecting Bacteroides and Bifidobacterium. The untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) showed that the proteins of raw XF affected the metabolic level through cysteine and methionine metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism pathways, and the concocted protein mainly involved histidine metabolism and purine metabolism pathways. Overall, XFP had potential development prospects, but the anti-nutritional factors might have some toxicity. The concocting process could significantly improve its safety, and the concocted proteins were worth developing as a food source. In the future, the processing conditions should be further optimized and more systematic investigation should be performed to ensure the safety of XF as a food source. Full article
Show Figures

Figure 1

22 pages, 5612 KiB  
Article
The Effect of Disulfiram and N-Acetylcysteine, Potential Compensators for Sulfur Disorders, on Lipopolysaccharide-Induced Neuroinflammation Leading to Memory Impairment and the Metabolism of L-Cysteine Disturbance
by Małgorzata Iciek, Anna Bilska-Wilkosz, Magdalena Górny, Marek Bednarski, Małgorzata Zygmunt, Anthea Miller, Noemi Nicosia, Giorgia Pia Lombardo, Paula Zammit and Magdalena Kotańska
Molecules 2025, 30(3), 578; https://doi.org/10.3390/molecules30030578 - 27 Jan 2025
Viewed by 1219
Abstract
Background: The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in [...] Read more.
Background: The role of sulfur-containing drugs, disulfiram (DSF) and N-acetylcysteine (NAC), in alleviating neuroinflammation is poorly understood. The objective of this study was to examine the effect of DSF and NAC on memory and on the metabolism of L-cysteine and inflammation-related parameters in the cerebral cortex of rats in a model of neuroinflammation induced by the administration of lipopolysaccharide (LPS). Methods: All the treatments were administered intraperitoneally for 10 days (LPS at a dose of 0.5 mg/kg b.w., DSF at a dose of 100 mg/kg b.w, and NAC at a dose of 100 mg/kg b.w.). Behavior was evaluated by the novel object recognition (NOR) test and object location (OL) test, and the level of brain-derived neurotrophic factor (BDNF) was assayed to evaluate neuronal functioning. Cerebral cortex homogenates were tested for hydrogen sulfide (H2S), sulfane sulfur, sulfates, non-protein sulfhydryl groups (NPSH), nitric oxide (NO), and reactive oxygen species (ROS) by biochemical analysis. Results: Neither DSF nor NAC alleviated LPS-induced memory disorders estimated by the NOR test and OL test. The studied compounds also did not affect significantly the levels of BDNF, ROS, NO, H2S, and sulfane sulfur in the cerebral cortex. However, we observed an increase in sulfate concentration in brain tissues after LPS treatment, while DSF and NAC caused an additional increase in sulfate concentration. On the other hand, our study showed that the administration of DSF or NAC together with LPS significantly enhanced the cortical level of NPSH, of which glutathione is the main component. Conclusions: Our study did not confirm the suggested potential of DSF and NAC to correct memory disorders; however, it corroborated the notion that they reduced oxidative stress induced by LPS by increasing the NPSH level. Additionally, our study showed an increase in sulfate concentration in the brain tissues after LPS treatment, which means the upregulation of sulfite and sulfate production in inflammatory conditions. Full article
Show Figures

Figure 1

21 pages, 3346 KiB  
Article
Regulation of Cysteine Homeostasis and Its Effect on Escherichia coli Sensitivity to Ciprofloxacin in LB Medium
by Galina Smirnova, Aleksey Tyulenev, Lyubov Sutormina, Tatyana Kalashnikova, Nadezda Muzyka, Vadim Ushakov, Zoya Samoilova and Oleg Oktyabrsky
Int. J. Mol. Sci. 2024, 25(8), 4424; https://doi.org/10.3390/ijms25084424 - 17 Apr 2024
Cited by 5 | Viewed by 1780
Abstract
Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is [...] Read more.
Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 2983 KiB  
Article
Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells
by Carolina Arriaza-Echanes, Jessica L. Campo-Giraldo, Felipe Valenzuela-Ibaceta, Javiera Ramos-Zúñiga and José M. Pérez-Donoso
Nanomaterials 2024, 14(6), 552; https://doi.org/10.3390/nano14060552 - 21 Mar 2024
Cited by 3 | Viewed by 2710
Abstract
In recent years, the utilization of extremophile microorganisms for the synthesis of metal nanoparticles, featuring enhanced properties and diverse compositions, has emerged as a sustainable strategy to generate high-quality nanomaterials with unique characteristics. Our study focuses on the biosynthesis of Cu-In-S (CIS) nanoparticles, [...] Read more.
In recent years, the utilization of extremophile microorganisms for the synthesis of metal nanoparticles, featuring enhanced properties and diverse compositions, has emerged as a sustainable strategy to generate high-quality nanomaterials with unique characteristics. Our study focuses on the biosynthesis of Cu-In-S (CIS) nanoparticles, which has garnered considerable attention in the past decade due to their low toxicity and versatile applications in biomedicine and solar cells. Despite this interest, there is a notable absence of reports on biological methods for CIS nanoparticle synthesis. In this research, three yeast species were isolated from soil samples in an extreme Antarctic environment—Union Glacier, Ellsworth Mountains. Among these isolates, Filobasidium stepposum demonstrated the capability to biosynthesize CIS nanoparticles when exposed to copper sulfate, indium chloride, glutathione, and cysteine. Subsequent purification and spectroscopic characterization confirmed the presence of characteristic absorbance and fluorescence peaks for CIS nanoparticles at 500 and 650 nm, respectively. Transmission electron microscopy analysis revealed the synthesis of monodisperse nanoparticles with a size range of 3–5 nm. Energy dispersive X-ray spectroscopy confirmed the composition of the nanoparticles, revealing the presence of copper, indium, and sulfur. The copper/indium ratio ranged from 0.15 to 0.27, depending on the reaction time. The biosynthesized CIS nanoparticles showed higher photostability than biomimetic nanoparticles and demonstrated successful application as photosensitizers in quantum dot-sensitized solar cells (QDSSC), achieving a conversion efficiency of up to 0.0247%. In summary, this work presents a cost-effective, straightforward, and environmentally friendly method for CIS nanoparticle synthesis. Furthermore, it constitutes the first documented instance of a biological procedure for producing these nanoparticles, opening avenues for the development of environmentally sustainable solar cells. Full article
(This article belongs to the Special Issue Nanomaterials for Green and Sustainable World)
Show Figures

Figure 1

16 pages, 3759 KiB  
Article
Identification of Protein–Phenol Adducts in Meat Proteins: A Molecular Probe Technology Study
by Fenhong Yang, Yingying Zhu, Xiaohan Li, Fengtao Xiang, Moru Deng, Wei Zhang, Wei Song, Hao Sun and Changbo Tang
Foods 2023, 12(23), 4225; https://doi.org/10.3390/foods12234225 - 23 Nov 2023
Cited by 4 | Viewed by 2230
Abstract
Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed [...] Read more.
Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA), a plant polyphenol with a catechol structure, using molecular probe technology. The CA-MP adducts were separated via sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and detected via Western blot and LC-MS/MS analyses. The Western blot analysis revealed that various specific adducts were successfully enriched and identified as bands around 220 kDa, 45 kDa, and two distinct bands between 95 and 130 kDa. Combined with the LC-MS/MS analysis, a total of 51 peptides were identified to be CA-adducted, corresponding to 31 proteins. More than 80% of the adducted peptides carried one adducted site, and the rest carried two adducted sites. The adducted sites were located on cysteine (C/Cys), histidine (H/His), arginine (R/Arg), lysine (K/Lys), proline (P/Pro), and N-terminal (N-Term) residues. Results showed that the covalent interaction of CA and MP was highly selective for the R side chain of amino acids. Moreover, the adducts were more likely to form via C-N bonding than C-S bonding. This study provides new insights into the covalent interaction of plant polyphenols and meat proteins, which has important implications for the rational use of plant polyphenols in the meat processing industry. Full article
(This article belongs to the Special Issue Development of Functional and Fortified Foods)
Show Figures

Figure 1

35 pages, 947 KiB  
Review
Foliar Application of Sulfur-Containing Compounds—Pros and Cons
by Dimitris L. Bouranis and Styliani N. Chorianopoulou
Plants 2023, 12(22), 3794; https://doi.org/10.3390/plants12223794 - 7 Nov 2023
Cited by 13 | Viewed by 7037
Abstract
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions [...] Read more.
Sulfate is taken up from the soil solution by the root system; and inside the plant, it is assimilated to hydrogen sulfide, which in turn is converted to cysteine. Sulfate is also taken up by the leaves, when foliage is sprayed with solutions containing sulfate fertilizers. Moreover, several other sulfur (S)-containing compounds are provided through foliar application, including the S metabolites hydrogen sulfide, glutathione, cysteine, methionine, S-methylmethionine, and lipoic acid. However, S compounds that are not metabolites, such as thiourea and lignosulfonates, along with dimethyl sulfoxide and S-containing adjuvants, are provided by foliar application—these are the S-containing agrochemicals. In this review, we elaborate on the fate of these compounds after spraying foliage and on the rationale and the efficiency of such foliar applications. The foliar application of S-compounds in various combinations is an emerging area of agricultural usefulness. In the agricultural practice, the S-containing compounds are not applied alone in spray solutions and the need for proper combinations is of prime importance. Full article
Show Figures

Figure 1

23 pages, 6383 KiB  
Article
Biological Characterization of Cleome felina L.f. Extracts for Phytochemical, Antimicrobial, and Hepatoprotective Activities in Wister Albino Rats
by Heena Yaqub Shaikh, Shaik Kalimulla Niazi, Asmatanzeem Bepari, Mary Anne Wong Cordero, Shazima Sheereen, Syed Arif Hussain, Muthuraj Rudrappa, Shashiraj Kariyellappa Nagaraja and Shekappa Ningappa Agadi
Antibiotics 2023, 12(10), 1506; https://doi.org/10.3390/antibiotics12101506 - 2 Oct 2023
Cited by 5 | Viewed by 2509
Abstract
The present study aims to explore the phytochemical constitution and biological activities of Cleome felina L.f. (Cleomaceae). C. felina (leaves, stem, and root) extracts (acetone, methanol, and water) were qualitatively assessed for phytochemical presence. Methanolic leaves extract revealed more positive phyto-compounds among all [...] Read more.
The present study aims to explore the phytochemical constitution and biological activities of Cleome felina L.f. (Cleomaceae). C. felina (leaves, stem, and root) extracts (acetone, methanol, and water) were qualitatively assessed for phytochemical presence. Methanolic leaves extract revealed more positive phyto-compounds among all the extracts; further, methanolic leaves extract was evaluated for FTIR, EDX, GCMS, antimicrobial assay, acute toxicity, and paracetamol-induced hepatoprotective activity in Wister albino rats. FTIR and EDX analysis unveiled important functional groups and elements in the leaves. GCMS analysis of methanolic leaves extract exposed 12 active phyto-compounds: major constituents detected were 1-Butanol, 3-methyl-, formate-48.79%; 1-Decanol, 2-ethyl-13.40%; 1,6-Anhydro-β-d-talopyranose-12.49%; Ethene, 1,2-bis(methylthio)-7.22%; Decane-4.02%; 3-Methylene-7, 11-dimethyl-1-dodecene-3.085%; Amlexanox-2.50%; 1,2,3,4-Cyclopentanetetrol, (1α,2β,3β,4α)-2.07%; L-Cysteine S-sulfate-1.84%; n-Hexadecanoic acid-1.70%; and Flucarbazone-1.55%. The antimicrobial assay showed a moderate zone of inhibition against S. aureus, B. cereus, E. coli, P. aeruginosa, C. albicans, and C. glabrata at 100 µL/mL concentration. Additionally, acute toxicity revealed no behavioral sign of the toxic effect. The significant results were obtained for methanolic leaves extract (low-50 and high-100 mg/kg b.wt. dose) for hepatoprotective activity, where it dramatically reduced serum blood biochemical markers (AST, ALT, ALP, Total bilirubin, and cholesterol) and exhibited elevated hepatic antioxidant enzymes (SOD, CAT, and GSH) concentration with lipid peroxidation retardation. To conclude, C. felina methanolic leaves extract ameliorated important phytochemical compounds and showed significant antimicrobial and hepatoprotective efficacy; therefore, utilization of C. felina leaves suggested in pharmacological applications, and in numerous cosmetics, herbicides, and food industries, would be a great scope for future hepatoprotective drug designing. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Products and Plants Extracts)
Show Figures

Graphical abstract

17 pages, 3452 KiB  
Article
In Silico RNAseq and Biochemical Analyses of Glucose-6-Phosphate Dehydrogenase (G6PDH) from Sweet Pepper Fruits: Involvement of Nitric Oxide (NO) in Ripening and Modulation
by María A. Muñoz-Vargas, Salvador González-Gordo, Jorge Taboada, José M. Palma and Francisco J. Corpas
Plants 2023, 12(19), 3408; https://doi.org/10.3390/plants12193408 - 27 Sep 2023
Cited by 8 | Viewed by 1806
Abstract
Pepper (Capsicum annuum L.) fruit is a horticultural product consumed worldwide which has great nutritional and economic relevance. Besides the phenotypical changes that pepper fruit undergo during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide [...] Read more.
Pepper (Capsicum annuum L.) fruit is a horticultural product consumed worldwide which has great nutritional and economic relevance. Besides the phenotypical changes that pepper fruit undergo during ripening, there are many associated modifications at transcriptomic, proteomic, biochemical, and metabolic levels. Nitric oxide (NO) is a recognized signal molecule that can exert regulatory functions in diverse plant processes including fruit ripening, but the relevance of NADPH as a fingerprinting of the crop physiology including ripening has also been proposed. Glucose-6-phosphate dehydrogenase (G6PDH) is the first and rate-limiting enzyme of the oxidative phase of the pentose phosphate pathway (oxiPPP) with the capacity to generate NADPH. Thus far, the available information on G6PDH and other NADPH-generating enzymatic systems in pepper plants, and their expression during the ripening of sweet pepper fruit, is very scarce. Therefore, an analysis at the transcriptomic, molecular and functional levels of the G6PDH system has been accomplished in this work for the first time. Based on a data-mining approach to the pepper genome and fruit transcriptome (RNA-seq), four G6PDH genes were identified in pepper plants and designated CaG6PDH1 to CaG6PDH4, with all of them also being expressed in fruits. While CaG6PDH1 encodes a cytosolic isozyme, the other genes code for plastid isozymes. The time-course expression analysis of these CaG6PDH genes during different fruit ripening stages, including green immature (G), breaking point (BP), and red ripe (R), showed that they were differentially modulated. Thus, while CaG6PDH2 and CaG6PDH4 were upregulated at ripening, CaG6PDH1 was downregulated, and CaG6PDH3 was slightly affected. Exogenous treatment of fruits with NO gas triggered the downregulation of CaG6PDH2, whereas the other genes were positively regulated. In-gel analysis using non-denaturing PAGE of a 50–75% ammonium-sulfate-enriched protein fraction from pepper fruits allowed for identifying two isozymes designated CaG6PDH I and CaG6PDH II, according to their electrophoretic mobility. In order to test the potential modulation of such pepper G6PDH isozymes, in vitro analyses of green pepper fruit samples in the presence of different compounds including NO donors (S-nitrosoglutathione and nitrosocysteine), peroxynitrite (ONOO), a hydrogen sulfide (H2S) donor (NaHS, sodium hydrosulfide), and reducing agents such as reduced glutathione (GSH) and L-cysteine (L-Cys) were assayed. While peroxynitrite and the reducing compounds provoked a partial inhibition of one or both isoenzymes, NaHS exerted 100% inhibition of the two CaG6PDHs. Taken together these data provide the first data on the modulation of CaG6PDHs at gene and activity levels which occur in pepper fruit during ripening and after NO post-harvest treatment. As a consequence, this phenomenon may influence the NADPH availability for the redox homeostasis of the fruit and balance its active nitro-oxidative metabolism throughout the ripening process. Full article
(This article belongs to the Special Issue Nitric Oxide in Plant Stress and Physiology)
Show Figures

Figure 1

18 pages, 3211 KiB  
Article
Melatonin Reverses High-Temperature-Stress-Inhibited Photosynthesis in the Presence of Excess Sulfur by Modulating Ethylene Sensitivity in Mustard
by Noushina Iqbal, Zebus Sehar, Mehar Fatma, Sheen Khan, Ameena Fatima Alvi, Iqbal R. Mir, Asim Masood and Nafees A. Khan
Plants 2023, 12(17), 3160; https://doi.org/10.3390/plants12173160 - 2 Sep 2023
Cited by 11 | Viewed by 1980
Abstract
Melatonin is a pleiotropic, nontoxic, regulatory biomolecule with various functions in abiotic stress tolerance. It reverses the adverse effect of heat stress on photosynthesis in plants and helps with sulfur (S) assimilation. Our research objective aimed to find the influence of melatonin, along [...] Read more.
Melatonin is a pleiotropic, nontoxic, regulatory biomolecule with various functions in abiotic stress tolerance. It reverses the adverse effect of heat stress on photosynthesis in plants and helps with sulfur (S) assimilation. Our research objective aimed to find the influence of melatonin, along with excess sulfur (2 mM SO42−), in reversing heat stress’s impacts on the photosynthetic ability of the mustard (Brassica juncea L.) cultivar SS2, a cultivar with low ATP-sulfurylase activity and a low sulfate transport index (STI). Further, we aimed to substantiate that the effect was a result of ethylene modulation. Melatonin in the presence of excess-S (S) increased S-assimilation and the STI by increasing the ATP-sulfurylase (ATP-S) and serine acetyltransferase (SAT) activity of SS2, and it enhanced the content of cysteine (Cys) and methionine (Met). Under heat stress, melatonin increased S-assimilation and diverted Cys towards the synthesis of more reduced glutathione (GSH), utilizing excess-S at the expense of less methionine and ethylene and resulting in plants’ reduced sensitivity to stress ethylene. The treatment with melatonin plus excess-S increased antioxidant enzyme activity, photosynthetic-S use efficiency (p-SUE), Rubisco activity, photosynthesis, and growth under heat stress. Further, plants receiving melatonin and excess-S in the presence of norbornadiene (NBD; an ethylene action inhibitor) under heat stress showed an inhibited STI and lower photosynthesis and growth. This suggested that ethylene was involved in the melatonin-mediated heat stress reversal effects on photosynthesis in plants. The interaction mechanism between melatonin and ethylene is still elusive. This study provides avenues to explore the melatonin–ethylene-S interaction for heat stress tolerance in plants. Full article
Show Figures

Figure 1

15 pages, 3039 KiB  
Article
The Radical SAM Heme Synthase AhbD from Methanosarcina barkeri Contains Two Auxiliary [4Fe-4S] Clusters
by Isabelle Fix, Lorenz Heidinger, Thorsten Friedrich and Gunhild Layer
Biomolecules 2023, 13(8), 1268; https://doi.org/10.3390/biom13081268 - 18 Aug 2023
Cited by 2 | Viewed by 1795
Abstract
In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical [...] Read more.
In archaea and sulfate-reducing bacteria, heme is synthesized via the siroheme-dependent pathway. The last step of this route is catalyzed by the Radical SAM enzyme AhbD and consists of the conversion of iron-coproporphyrin III into heme. AhbD belongs to the subfamily of Radical SAM enzymes containing a SPASM/Twitch domain carrying either one or two auxiliary iron–sulfur clusters in addition to the characteristic Radical SAM cluster. In previous studies, AhbD was reported to contain one auxiliary [4Fe-4S] cluster. In this study, the amino acid sequence motifs containing conserved cysteine residues in AhbD proteins from different archaea and sulfate-reducing bacteria were reanalyzed. Amino acid sequence alignments and computational structural models of AhbD suggested that a subset of AhbD proteins possesses the full SPASM motif and might contain two auxiliary iron–sulfur clusters (AuxI and AuxII). Therefore, the cluster content of AhbD from Methanosarcina barkeri was studied using enzyme variants lacking individual clusters. The purified enzymes were analyzed using UV/Visible absorption and EPR spectroscopy as well as iron/sulfide determinations showing that AhbD from M. barkeri contains two auxiliary [4Fe-4S] clusters. Heme synthase activity assays suggested that the AuxI cluster might be involved in binding the reaction intermediate and both clusters potentially participate in electron transfer. Full article
(This article belongs to the Special Issue Unraveling Mysteries of Heme Metabolism)
Show Figures

Graphical abstract

23 pages, 3271 KiB  
Article
S-Nitrosylation of Tissue Transglutaminase in Modulating Glycolysis, Oxidative Stress, and Inflammatory Responses in Normal and Indoxyl-Sulfate-Induced Endothelial Cells
by Cheng-Jui Lin, Chun Yu Chiu, En-Chih Liao, Chih-Jen Wu, Ching-Hu Chung, Charles S. Greenberg and Thung-S. Lai
Int. J. Mol. Sci. 2023, 24(13), 10935; https://doi.org/10.3390/ijms241310935 - 30 Jun 2023
Cited by 4 | Viewed by 2673
Abstract
Circulating uremic toxin indoxyl sulfate (IS), endothelial cell (EC) dysfunction, and decreased nitric oxide (NO) bioavailability are found in chronic kidney disease patients. NO nitrosylates/denitrosylates a specific protein’s cysteine residue(s), forming S-nitrosothios (SNOs), and the decreased NO bioavailability could interfere with NO-mediated signaling [...] Read more.
Circulating uremic toxin indoxyl sulfate (IS), endothelial cell (EC) dysfunction, and decreased nitric oxide (NO) bioavailability are found in chronic kidney disease patients. NO nitrosylates/denitrosylates a specific protein’s cysteine residue(s), forming S-nitrosothios (SNOs), and the decreased NO bioavailability could interfere with NO-mediated signaling events. We were interested in investigating the underlying mechanism(s) of the reduced NO and how it would regulate the S-nitrosylation of tissue transglutaminase (TG2) and its substrates on glycolytic, redox and inflammatory responses in normal and IS-induced EC injury. TG2, a therapeutic target for fibrosis, has a Ca2+-dependent transamidase (TGase) that is modulated by S-nitrosylation. We found IS increased oxidative stress, reduced NADPH and GSH levels, and uncoupled eNOS to generate NO. Immunoblot analysis demonstrated the upregulation of an angiotensin-converting enzyme (ACE) and significant downregulation of the beneficial ACE2 isoform that could contribute to oxidative stress in IS-induced injury. An in situ TGase assay demonstrated IS-activated TG2/TGase aminylated eNOS, NFkB, IkBα, PKM2, G6PD, GAPDH, and fibronectin (FN), leading to caspases activation. Except for FN, TGase substrates were all differentially S-nitrosylated either with or without IS but were denitrosylated in the presence of a specific, irreversible TG2/TGase inhibitor ZDON, suggesting ZDON-bound TG2 was not effectively transnitrosylating to TG2/TGase substrates. The data suggest novel roles of TG2 in the aminylation of its substrates and could also potentially function as a Cys-to-Cys S-nitrosylase to exert NO’s bioactivity to its substrates and modulate glycolysis, redox, and inflammation in normal and IS-induced EC injury. Full article
(This article belongs to the Special Issue Nitric Oxide Synthases: Function and Regulation)
Show Figures

Graphical abstract

16 pages, 1942 KiB  
Article
Influence of Growth Medium Composition on Physiological Responses of Escherichia coli to the Action of Chloramphenicol and Ciprofloxacin
by Galina Smirnova, Aleksey Tyulenev, Nadezda Muzyka, Vadim Ushakov, Zoya Samoilova and Oleg Oktyabrsky
BioTech 2023, 12(2), 43; https://doi.org/10.3390/biotech12020043 - 1 Jun 2023
Cited by 9 | Viewed by 4641
Abstract
The ability of hydrogen sulfide (H2S) to protect bacteria from bactericidal antibiotics has previously been described. The main source of H2S is the desulfurization of cysteine, which is either synthesized by cells from sulfate or transported from the medium, [...] Read more.
The ability of hydrogen sulfide (H2S) to protect bacteria from bactericidal antibiotics has previously been described. The main source of H2S is the desulfurization of cysteine, which is either synthesized by cells from sulfate or transported from the medium, depending on its composition. Applying electrochemical sensors and a complex of biochemical and microbiological methods, changes in growth, respiration, membrane potential, SOS response, H2S production and bacterial survival under the action of bactericidal ciprofloxacin and bacteriostatic chloramphenicol in commonly used media were studied. Chloramphenicol caused a sharp inhibition of metabolism in all studied media. The physiological response of bacteria to ciprofloxacin strongly depended on its dose. In rich LB medium, cells retained metabolic activity at higher concentrations of ciprofloxacin than in minimal M9 medium. This decreased number of surviving cells (CFU) by 2–3 orders of magnitude in LB compared to M9 medium, and shifted optimal bactericidal concentration (OBC) from 0.3 µg/mL in M9 to 3 µg/mL in LB. Both drugs induced transient production of H2S in M9 medium. In media containing cystine, H2S was produced independently of antibiotics. Thus, medium composition significantly modifies physiological response of E. coli to bactericidal antibiotic, which should be taken into account when interpreting data and developing drugs. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Graphical abstract

18 pages, 3746 KiB  
Article
Integrated Microbiota and Metabolome Analysis to Assess the Effects of the Solid-State Fermentation of Corn–Soybean Meal Feed Using Compound Strains
by Yue Li, Qinghong Hao, Chunhui Duan, Yawei Ding, Yuanyuan Wang, Xiaojun Guo, Yueqin Liu, Yunxia Guo and Yingjie Zhang
Microorganisms 2023, 11(5), 1319; https://doi.org/10.3390/microorganisms11051319 - 17 May 2023
Cited by 5 | Viewed by 2724
Abstract
Solid-state fermentation is known to improve plant-based feed nutritional quality; however, the association between microbes and metabolite production in fermented feed remains unclear. We inoculated corn–soybean–wheat bran (CSW) meal feed with Bacillus licheniformis Y5-39, Bacillus subtilis B-1, and lactic acid bacteria RSG-1. Then, [...] Read more.
Solid-state fermentation is known to improve plant-based feed nutritional quality; however, the association between microbes and metabolite production in fermented feed remains unclear. We inoculated corn–soybean–wheat bran (CSW) meal feed with Bacillus licheniformis Y5-39, Bacillus subtilis B-1, and lactic acid bacteria RSG-1. Then, 16S rDNA sequencing and untargeted metabolomic profiling were applied to investigate changes in the microflora and metabolites, respectively, and their integrated correlations during fermentation were assessed. The results indicated that trichloroacetic acid soluble protein levels showed a sharp increase, while glycinin and β-conglycinin levels showed a sharp decrease in the fermented feed, as confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Pediococcus, Enterococcus, and Lactobacillus were predominant in the fermented feed. Overall, 699 significantly different metabolites were identified before and after fermentation. Arginine and proline, cysteine and methionine, and phenylalanine and tryptophan metabolism were the key pathways, with arginine and proline metabolism being the most important pathway in the fermentation process. By analyzing the correlation between the microbiota and metabolite production, lysyl–valine and lysyl–proline levels were found to be positively correlated with Enterococcus and Lactobacillus abundance. However, Pediococcus was positively correlated with some metabolites contributing to nutritional status and immune function. According to our data, Pediococcus, Enterococcus, and Lactobacillus mainly participate in protein degradation, amino acid metabolism, and lactic acid production in fermented feed. Our results provide new insights into the dynamic changes in metabolism that occurred during the solid-state fermentation of corn–soybean meal feed using compound strains and should facilitate the optimization of fermentation production efficiency and feed quality. Full article
Show Figures

Figure 1

20 pages, 1378 KiB  
Article
Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods
by Dimitris L. Bouranis, Georgios P. Stylianidis, Vassiliki Manta, Evangelos N. Karousis, Andriani Tzanaki, Despina Dimitriadi, Emmanuel A. Bouzas, Vassilis F. Siyiannis, Violetta Constantinou-Kokotou, Styliani N. Chorianopoulou and Elke Bloem
Plants 2023, 12(6), 1272; https://doi.org/10.3390/plants12061272 - 10 Mar 2023
Cited by 11 | Viewed by 2967
Abstract
Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and [...] Read more.
Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application. Broccoli plants were cultivated in a greenhouse and at the beginning of floret growth, we exogenously applied sodium selenate in the concentration gradient of 0, 0.2, 1.5, and 3.0 mM to study the impact of increased Se concentration on the organic S (Sorg) content of the floret. The Se concentration of 0.2 mM (Se0.2) was coupled with the application of Cys, Met, their combination, or a mixture of phenylalanine, tryptophane, and Met. The application took place through fertigation or foliar application (FA) by adding isodecyl alcohol ethoxylate (IAE) or a silicon ethoxylate (SiE) surfactant. Fresh biomass, dry mass, and Se accumulation in florets were evaluated, along with their contents of Sorg, chlorophylls (Chl), carotenoids (Car), glucoraphanin (GlRa), glucobrassicin (GlBra), glucoiberin (GlIb), and polyphenols (PPs), for the biofortification efficiency of the three application modes. From the studied selenium concentration gradient, the foliar application of 0.2 mM Se using silicon ethoxylate (SiE) as a surfactant provided the lowest commercially acceptable Se content in florets (239 μg or 0.3 μmol g−1 DM); it reduced Sorg (−45%), GlIb (−31%), and GlBr (−27%); and it increased Car (21%) and GlRa (27%). Coupled with amino acids, 0.2 mM Se provided commercially acceptable Se contents per floret only via foliar application. From the studied combinations, that of Met,Se0.2/FA,IAE provided the lowest Se content per floret (183 μg or 0.2 μmol g−1 DM) and increased Sorg (35%), Car (45%), and total Chl (27%), with no effect on PPs or GSLs. Cys,Met,Se0.2/FA,IAE and amino acid mix,Se0.2/FA,IAE increased Sorg content, too, by 36% and 16%, respectively. Thus, the foliar application with the IAE surfactant was able to increase Sorg, and methionine was the amino acid in common in these treatments, with varying positive effects on carotenoids and chlorophylls. Only the Cys,Met,Se0.2 combination presented positive effects on GSLs, especially GlRa, but it reduced the fresh mass of the floret. The foliar application with SiE as a surfactant failed to positively affect the organic S content. However, in all studied combinations of Se 0.2 mM with amino acids, the Se content per floret was commercially acceptable, the yield was not affected, the content of GSLs was increased (especially that of GlRa and GlIb), and PPs were not affected. The content of GlBr decreased except for the treatment with methionine (Met,Se0.2/FA,SiE) where GlBr remained unaffected. Hence, the combination of Se with the used amino acids and surfactants can provide enhanced biofortification efficiency in broccoli by providing florets as functional foods with enhanced functional properties. Full article
(This article belongs to the Special Issue Natural and Anthropogenic Origin Selenium in the Context of Plants)
Show Figures

Figure 1

19 pages, 2637 KiB  
Article
Yohimbine Alleviates Oxidative Stress and Suppresses Aerobic Cysteine Metabolism Elevated in the Rat Liver of High-Fat Diet-Fed Rats
by Małgorzata Iciek, Magdalena Górny, Magdalena Kotańska, Anna Bilska-Wilkosz, Marta Kaczor-Kamińska and Jacek Zagajewski
Molecules 2023, 28(5), 2025; https://doi.org/10.3390/molecules28052025 - 21 Feb 2023
Cited by 4 | Viewed by 5554
Abstract
Yohimbine is a small indole alkaloid derived from the bark of the yohimbe tree with documented biological activity, including anti-inflammatory, erectile dysfunction relieving, and fat-burning properties. Hydrogen sulfide (H2S) and sulfane sulfur-containing compounds are regarded as important molecules in redox regulation [...] Read more.
Yohimbine is a small indole alkaloid derived from the bark of the yohimbe tree with documented biological activity, including anti-inflammatory, erectile dysfunction relieving, and fat-burning properties. Hydrogen sulfide (H2S) and sulfane sulfur-containing compounds are regarded as important molecules in redox regulation and are involved in many physiological processes. Recently, their role in the pathophysiology of obesity and obesity-induced liver injury was also reported. The aim of the present study was to verify whether the mechanism of biological activity of yohimbine is related to reactive sulfur species formed during cysteine catabolism. We tested the effect of yohimbine at doses of 2 and 5 mg/kg/day administered for 30 days on aerobic and anaerobic catabolism of cysteine and oxidative processes in the liver of high-fat diet (HFD)-induced obese rats. Our study revealed that HFD resulted in a decrease in cysteine and sulfane sulfur levels in the liver, while sulfates were elevated. In the liver of obese rats, rhodanese expression was diminished while lipid peroxidation increased. Yohimbine did not influence sulfane sulfur and thiol levels in the liver of obese rats, however, this alkaloid at a dose of 5 mg decreased sulfates to the control level and induced expression of rhodanese. Moreover, it diminished hepatic lipid peroxidation. It can be concluded that HFD attenuates anaerobic and enhances aerobic cysteine catabolism and induces lipid peroxidation in the rat liver. Yohimbine at a dose of 5 mg/kg can alleviate oxidative stress and reduce elevated concentrations of sulfate probably by the induction of TST expression. Full article
Show Figures

Figure 1

Back to TopTop