Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cyclic solvent injection (CSI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8981 KB  
Article
Insights into Foamy Oil Phenomenon in Porous Media: Experimental and Numerical Investigation
by Morteza Sabeti, Farshid Torabi and Ali Cheperli
Processes 2025, 13(10), 3067; https://doi.org/10.3390/pr13103067 - 25 Sep 2025
Viewed by 481
Abstract
Cyclic Solvent Injection (CSI) is a method for enhanced heavy oil recovery, offering a reduced environmental impact. CSI processes typically involve fluid flow through both wormholes and the surrounding porous media in reservoirs. Therefore, understanding how foamy oil behavior differs between bulk phases [...] Read more.
Cyclic Solvent Injection (CSI) is a method for enhanced heavy oil recovery, offering a reduced environmental impact. CSI processes typically involve fluid flow through both wormholes and the surrounding porous media in reservoirs. Therefore, understanding how foamy oil behavior differs between bulk phases and porous media is crucial for optimizing CSI operations. However, despite CSI’s advantages, limited research has explained why foamy oil, a key mechanism in CSI, displays weaker strength and stability in bulk phases than in porous media. To address this gap, three advanced visual micromodels were employed to monitor bubble behavior from nucleation through collapse under varying porosity with a constant pressure reduction. A sandpack depletion test in a large cylindrical model further validated the non-equilibrium bubble-reaction kinetics observed in the micromodels. Experiments showed that, under equivalent operating conditions, bubble nucleation in porous media required less energy and initiated more rapidly than in a bulk phase. Micromodels with lower porosity demonstrated up to a 2.5-fold increase in foamy oil volume expansion and higher bubble stability. Moreover, oil production in the sandpack declined sharply at pressures below 1800 kPa, indicating the onset of critical gas saturation, and yielded a maximum recovery of 37% of the original oil in place. These findings suggest that maintaining reservoir pressure above critical gas saturation pressure enhances oil recovery performance during CSI operations. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Graphical abstract

33 pages, 2380 KB  
Review
A Comprehensive Review of Symmetrical Multilateral Well (MLW) Applications in Cyclic Solvent Injection (CSI): Advancements, Challenges, and Future Prospects
by Shengyi Wu, Farshid Torabi and Ali Cheperli
Symmetry 2025, 17(9), 1513; https://doi.org/10.3390/sym17091513 - 11 Sep 2025
Viewed by 709
Abstract
This paper presents a comprehensive review and theoretical analysis of integrating Cyclic Solvent Injection (CSI) with multilateral well (MLW) technologies to enhance heavy oil recovery. Given that many MLW configurations inherently exhibit symmetrical geometries, CSI–MLW integration offers structural advantages for fluid distribution. CSI [...] Read more.
This paper presents a comprehensive review and theoretical analysis of integrating Cyclic Solvent Injection (CSI) with multilateral well (MLW) technologies to enhance heavy oil recovery. Given that many MLW configurations inherently exhibit symmetrical geometries, CSI–MLW integration offers structural advantages for fluid distribution. CSI offers a non-thermal mechanism for oil production through viscosity reduction, oil swelling, and foamy oil behaviour, but its application is often limited by poor sweep efficiency and non-uniform solvent distribution in conventional single-well configurations. In contrast, MLW configurations are effective in increasing reservoir contact and improving flow control but lack solvent-based enhancement mechanisms. In particular, symmetrical MLW configurations, such as dual-opposing laterals and evenly spaced fishbone laterals, can facilitate balanced solvent distribution and pressure profiles, thereby improving sweep efficiency and mitigating early breakthrough. By synthesizing experimental findings and theoretical insights from the existing literature, laboratory studies have reported that post-CHOPS CSI using a 28% C3H8–72% CO2 mixture can recover about 50% of the original oil in place after six cycles, while continuous-propagation CSI (CPCSI) has achieved up to ~85% OOIP in 1D physical models. These representative values illustrate the performance spectrum observed across different CSI operational modes, underscoring the importance of operational parameters in governing recovery outcomes. Building on this foundation, this paper synthesizes key operational parameters, including solvent composition, pressure decline rate, and well configuration, that influence CSI performance. While previous studies have extensively reviewed CSI and MLW as separate technologies, systematic analyses of their integration remain limited. This review addresses that gap by providing a structured synthesis of CSI–MLW interactions, supported by representative quantitative evidence from the literature. The potential synergy between CSI and MLW is highlighted as a promising direction to overcome current limitations. By leveraging geometric symmetry in well architecture, the integrated CSI–MLW approach offers unique opportunities for optimizing solvent utilization, enhancing recovery efficiency, and guiding future experimental and field-scale developments. Such symmetry-oriented designs are also central to the experimental framework proposed in this study, in which potential methods, such as the microfluidic visualization of different MLW configurations, spanning small-scale visualization studies, bench-scale experiments on fluid and chemical interactions, and mock field setups with pipe networks, are proposed as future avenues to further explore and validate this integrated strategy. Full article
Show Figures

Figure 1

16 pages, 10290 KB  
Article
Integrated Experimental and Numerical Investigation on CO2-Based Cyclic Solvent Injection Enhanced by Water and Nanoparticle Flooding for Heavy Oil Recovery and CO2 Sequestration
by Yishu Li, Yufeng Cao, Yiming Chen and Fanhua Zeng
Energies 2025, 18(17), 4663; https://doi.org/10.3390/en18174663 - 2 Sep 2025
Viewed by 768
Abstract
Cyclic solvent injection (CSI) with CO2 is a promising non-thermal enhanced oil recovery (EOR) method for heavy oil reservoirs that also supports CO2 sequestration. However, its effectiveness is limited by short foamy oil flow durations and low CO2 utilization. This [...] Read more.
Cyclic solvent injection (CSI) with CO2 is a promising non-thermal enhanced oil recovery (EOR) method for heavy oil reservoirs that also supports CO2 sequestration. However, its effectiveness is limited by short foamy oil flow durations and low CO2 utilization. This study explores how waterflooding and nanoparticle-assisted flooding can enhance CO2-CSI performance through experimental and numerical approaches. Three sandpack experiments were conducted: (1) a baseline CO2-CSI process, (2) a waterflood-assisted CSI process, and (3) a hybrid sequence integrating CSI, waterflooding, and nanoparticle flooding. The results show that waterflooding prior to CSI increased oil recovery from 30.9% to 38.9% under high-pressure conditions and from 26.9% to 28.8% under low pressure, while also extending production duration. When normalized to the oil saturation at the start of CSI, the Effective Recovery Index (ERI) increased significantly, confirming improved per-unit recovery efficiency, while nanoparticle flooding further contributed an additional 5.9% recovery by stabilizing CO2 foam. The CO2-CSI process achieved a maximum CO2 sequestration rate of up to 5.8% per cycle, which exhibited a positive correlation with oil production. Numerical simulation achieved satisfactory history matching and captured key trends such as changes in relative permeability and gas saturation. Overall, the integrated CSI strategy achieved a total oil recovery factor of approximately 70% and improved CO2 sequestration efficiency. This work demonstrates that combining waterflooding and nanoparticle injection with CO2-CSI can enhance both oil recovery and CO2 sequestration, offering a framework for optimizing low-carbon EOR processes. Full article
Show Figures

Figure 1

24 pages, 13675 KB  
Article
Microscopic Investigation of the Effect of Different Wormhole Configurations on CO2-Based Cyclic Solvent Injection in Post-CHOPS Reservoirs
by Sepideh Palizdan, Farshid Torabi and Afsar Jaffar Ali
Processes 2025, 13(7), 2194; https://doi.org/10.3390/pr13072194 - 9 Jul 2025
Viewed by 558
Abstract
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one [...] Read more.
Cyclic Solvent Injection (CSI), one of the most promising solvent-based enhanced oil recovery (EOR) methods, has attracted the oil industry’s interest due to its energy efficiency, produced oil quality, and environmental suitability. Previous studies revealed that foamy oil flow is considered as one of the main mechanisms of the CSI process. However, due to the presence of complex high-permeable channels known as wormholes in Post-Cold Heavy Oil Production with Sands (Post-CHOPS) reservoirs, understanding the effect of each operational parameter on the performance of the CSI process in these reservoirs requires a pore-scale investigation of different wormhole configurations. Therefore, in this project, a comprehensive microfluidic experimental investigation into the effect of symmetrical and asymmetrical wormholes during the CSI process has been conducted. A total of 11 tests were designed, considering four different microfluidic systems with various wormhole configurations. Various operational parameters, including solvent type, pressure depletion rate, and the number of cycles, were considered to assess their effects on foamy oil behavior in post-CHOPS reservoirs in the presence of wormholes. The finding revealed that the wormhole configuration plays a crucial role in controlling the oil production behavior. While the presence of the wormhole in a symmetrical design could positively improve oil production, it would restrict oil production in an asymmetrical design. To address this challenge, we used the solvent mixture containing 30% propane that outperformed CO2, overcame the impact of the asymmetrical wormhole, and increased the total recovery factor by 14% under a 12 kPa/min pressure depletion rate compared to utilizing pure CO2. Moreover, the results showed that applying a lower pressure depletion rate at 4 kPa/min could recover a slightly higher amount of oil, approximately 2%, during the first cycle compared to tests conducted under higher pressure depletion rates. However, in later cycles, a higher pressure depletion rate at 12 kPa/min significantly improved foamy oil flow quality and, subsequently, heavy oil recovery. The interesting finding, as observed, is the gap difference between the total recovery factor at the end of the cycle and the recovery factor after the first cycle, which increases noticeably with higher pressure depletion rate, increasing from 9.5% under 4 kPa/min to 16% under 12 kPa/min. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

21 pages, 6484 KB  
Review
Recent Developments in the CO2-Cyclic Solvent Injection Process to Improve Oil Recovery from Poorly Cemented Heavy Oil Reservoirs: The Case of Canadian Reservoirs
by Daniel Cartagena-Pérez, Alireza Rangriz Shokri and Rick Chalaturnyk
Energies 2025, 18(11), 2728; https://doi.org/10.3390/en18112728 - 24 May 2025
Cited by 3 | Viewed by 1194
Abstract
One of the limitations of Cold Heavy Oil Production with Sand (CHOPS) is the low recovery factor (5–15%). To target the remaining 85–95% heavy oil resources, several enhanced oil recovery (EOR) techniques, such as cyclic solvent injection (CSI), have been proposed. Due to [...] Read more.
One of the limitations of Cold Heavy Oil Production with Sand (CHOPS) is the low recovery factor (5–15%). To target the remaining 85–95% heavy oil resources, several enhanced oil recovery (EOR) techniques, such as cyclic solvent injection (CSI), have been proposed. Due to its potential success in Canada and elsewhere, this paper reviews the technical and efficiency requirements of CSI EOR in post-CHOPS heavy oil reservoirs. We explain the dominant driving mechanisms of CSI with a focus on the application of CO2 as a solvent. Limitations of current thermal and non-thermal EOR methods were compared to the CSI in thin oil reservoirs. To complete the assessment, several case studies and lessons learned were included based on the latest laboratory experiments, numerical studies, and CSI pilot/field tests. Specific to thin and shallow heavy oil reservoirs with sand production (e.g., CHOPS), the key to recover incremental oil was found to re-energize depleted reservoirs in a cyclic manner with unexpensive solvents (e.g., CO2). Regarding the solvent use, laboratory experiences have not been conclusive about what solvent stream could improve oil recovery. To this end, successful field scale CO2 EOR applications have been reported in several post-CHOPS reservoirs indicating that highly productive wells during primary production might also outperform during a follow up CSI process. Numerical modeling still faces challenges to properly model the main CSI driving mechanisms, including fluid–solvent interaction and the deformation of subsurface reservoirs. Full article
Show Figures

Figure 1

15 pages, 5437 KB  
Article
An Ethane-Based CSI Process and Two Types of Flooding Process as a Hybrid Method for Enhancing Heavy Oil Recovery
by Yishu Li, Zhongwei Du, Bo Wang, Jiasheng Ding and Fanhua Zeng
Energies 2024, 17(6), 1457; https://doi.org/10.3390/en17061457 - 18 Mar 2024
Cited by 1 | Viewed by 1496
Abstract
Combining multiple secondary oil recovery (SOR)/enhanced oil recovery (EOR) methods can be an effective way to maximize oil recovery from heavy oil reservoirs; however, previous studies typically focus on single methods. In order to optimize the combined process of ethane-based cyclic solvent injection [...] Read more.
Combining multiple secondary oil recovery (SOR)/enhanced oil recovery (EOR) methods can be an effective way to maximize oil recovery from heavy oil reservoirs; however, previous studies typically focus on single methods. In order to optimize the combined process of ethane-based cyclic solvent injection (CSI) and water/nanoparticle-solution flooding, a comprehensive understanding of the impact of injection pressure, water, and nanoparticles on CSI performance is crucial. This study aims to provide such understanding through experimental evaluation, advancing the knowledge of EOR methods for heavy oil recovery. Three approaches (an ethane-based CSI process, water flooding, and nanoparticle-solution flooding) were applied through a cylindrical sandpack model with a length of 95.0 cm and a diameter of 3.8 cm. Test 1 conducted an ethane-based CSI process only. Test 2 conducted a combination approach of CSI–water flooding–CSI–nanoparticle-solution flooding–CSI. Specifically, the injection pressure of the first CSI phase in Test 2 was gradually increased from 3500 to 5500 kPa. The second and the third CSI phases had the same injection pressure as Test 1 at 5500 kPa. The CSI process ceased once the oil recovery was less than 0.5% of the original oil in place (OOIP) in a single cycle. Results show that the ethane-based CSI process is sensitive to injection pressure. A high injection pressure is crucial for optimal oil recovery. The first CSI phase in Test 2, where the injection pressure was increased gradually, resulted in a 2.9% lower oil recovery and five times as much ethane consumption compared to Test 1, which applied a high injection pressure. It was also found that water flooding improved the oil recovery in the CSI process. In Test 2, the oil recovery factor of the second CSI phase increased by 57% after the water flooding process, which is likely due to the formation of water channels and a dispersed oil phase that increased the contact area between ethane and oil. Although the nanoparticle-solution flooding only had 0.3% oil recovery, after that the third CSI phase stimulated another 10.8% of OOIP even when the water saturation achieved more than 65%. This demonstrated that the addition of nanoparticles can maintain the stability of the foam and enhance the transfer of ethane to the heavy oil. Finally, Test 2 reached a total oil recovery factor of 76.1% on a lab scale, an increase of 45% compared to the single EOR method, which proved the combination process is an efficient method to develop a heavy oil field. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

22 pages, 3727 KB  
Article
Gas Pressure Cycling (GPC) and Solvent-Assisted Gas Pressure Cycling (SA-GPC) Enhanced Oil Recovery Processes in a Thin Heavy Oil Reservoir
by Olusegun Ojumoola, Hongze Ma and Yongan Gu
Energies 2020, 13(19), 5047; https://doi.org/10.3390/en13195047 - 25 Sep 2020
Cited by 1 | Viewed by 3467
Abstract
In this paper, gas pressure cycling (GPC) and solvent-assisted gas pressure cycling (SA-GPC) were developed as two new and effective enhanced oil recovery (EOR) processes. Eight coreflood tests were conducted by using a 2-D rectangular sandpacked physical model with a one or two-well [...] Read more.
In this paper, gas pressure cycling (GPC) and solvent-assisted gas pressure cycling (SA-GPC) were developed as two new and effective enhanced oil recovery (EOR) processes. Eight coreflood tests were conducted by using a 2-D rectangular sandpacked physical model with a one or two-well configuration. More specifically, two cyclic solvent injection (CSI), three GPC, and three SA-GPC tests were conducted after the primary production, whose pressure was declined in steps from Pi = 3.0 MPa to Pf = 0.2 MPa. It was found that the CSI tests had poor performances because of the known CSI technical shortcomings and an additional technical issue of solvent trapping found in this study. Quick heavy oil viscosity regainment resulted in the solvent-trapping zone. In contrast, C3H8-GPC test at a pressure depletion step size of ∆PEOR = 0.5 MPa and C3H8-SA-CO2-GPC test at ∆PEOR = 1.0 MPa had the highest total heavy oil recovery factors (RFs) of 41.9% and 36.6% of the original oil-in-place (OOIP) among the two respective series of GPC and SA-GPC tests. The better performances of these two tests than C3H8- or CO2-CSI test were attributed to the effective displacement of the foamy oil toward the producer in the two-well configuration. Thus the back-and-forth movements of the foamy oil in CSI test in the one-well configuration were eliminated in these GPC and SA-GPC tests. Furthermore, C3H8-GPC test outperformed C3H8-SA-CO2-GPC test in terms of the heavy oil RF and cumulative gas-oil ratio (cGOR) because of the formation of stronger foamy-oil flow and the absence of CO2, which reduced the solubility of C3H8 in the heavy oil in the latter test. In summary, different solvent-based EOR processes were ranked based on the heavy oil RFs as follows: C3H8-GPC > C3H8-SA-CO2-GPC > CO2-GPC > C3H8-CSI > CO2-CSI. Full article
(This article belongs to the Special Issue CO2 EOR and Sequestration: Conventional and Unconventional Reservoirs)
Show Figures

Graphical abstract

Back to TopTop