Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = cyclic diadenosine monophosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 17560 KiB  
Article
Bioinformatics Analysis of Diadenylate Cyclase Regulation on Cyclic Diadenosine Monophosphate Biosynthesis in Exopolysaccharide Production by Leuconostoc mesenteroides DRP105
by Wenna Yu, Liansheng Yu, Tengxin Li, Ziwen Wang, Renpeng Du and Wenxiang Ping
Fermentation 2025, 11(4), 196; https://doi.org/10.3390/fermentation11040196 - 7 Apr 2025
Viewed by 732
Abstract
Lactic acid bacteria exopolysaccharides (EPS) have a variety of excellent biological functions and are widely used in the food and pharmaceutical industries. The complex metabolic system of lactic acid bacteria and the mechanism of EPS biosynthesis have not been fully analyzed, which limits [...] Read more.
Lactic acid bacteria exopolysaccharides (EPS) have a variety of excellent biological functions and are widely used in the food and pharmaceutical industries. The complex metabolic system of lactic acid bacteria and the mechanism of EPS biosynthesis have not been fully analyzed, which limits the wider application of EPS. EPS synthesis is regulated by cyclic diadenosine monophosphate (c-di-AMP), but the exact mechanism remains unclear. Dac and pde are c-di-AMP anabolic genes, gtfA, gtfB and gtfC are EPS synthesis gene clusters, among which gtfC was the key gene for EPS synthesis in Leuconostoc mesenteroides DRP105. In order to explore whether diadenylate cyclase (DAC) can catalyze the synthesis of c-di-AMP from ATP, the sequence of DAC was analyzed by bioinformatics based on the whole genome sequence. DAC was a CdaA type diadenylate cyclase containing the classical domain DisA_N and DGA and RHR motifs. The secondary structure was mainly composed of α-helices, and AlphaFold2 was used to model the 3D structure of the protein and evaluate the rationality of the DAC protein structure model. A total of 8 salt bridges, 21 hydrogen bonds and 221 non-bonded interactions were found between DAC and GtfC. Molecular docking simulations revealed ATP1 and ATP2 fully occupied the binding pocket of DAC and interacted directly with the binding site residues of DAC. The molecular dynamics simulations showed that the binding of DAC to ATP molecules was relatively stable. Gene and enzyme correlation analysis found that dac and gtfC gene expression were significantly positively correlated with DAC enzyme activity, c-di-AMP content and EPS production, and had no significant correlation with PDE enzyme activity responsible for c-di-AMP degradation. Bioinformatics analysis of the regulatory role of DAC in the synthesis of EPS by lactic acid bacteria was helpful to fully reveal the biosynthetic mechanism of EPS and provide theoretical basis for large-scale industrial production of EPS. Full article
Show Figures

Figure 1

17 pages, 1541 KiB  
Article
C-di-AMP Is a Second Messenger in Corynebacterium glutamicum That Regulates Expression of a Cell Wall-Related Peptidase via a Riboswitch
by Sebastian J. Reich, Oliver Goldbeck, Tsenguunmaa Lkhaasuren, Dominik Weixler, Tamara Weiß and Bernhard J. Eikmanns
Microorganisms 2023, 11(2), 296; https://doi.org/10.3390/microorganisms11020296 - 23 Jan 2023
Cited by 3 | Viewed by 2950
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of [...] Read more.
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of its role in Actinobacteria, namely in Corynebacterium glutamicum. This organism is a well-known industrial production host and a model organism for pathogens, such as C. diphtheriae or Mycobacterium tuberculosis. Here, we identify and analyze the minimal set of two C. glutamicum enzymes, the diadenylate cyclase DisA and the phosphodiesterase PdeA, responsible for c-di-AMP metabolism. DisA synthesizes c-di-AMP from two molecules of ATP, whereas PdeA degrades c-di-AMP, as well as the linear degradation intermediate phosphoadenylyl-(3′→5′)-adenosine (pApA) to two molecules of AMP. Here, we show that a ydaO/kimA-type c-di-AMP-dependent riboswitch controls the expression of the strictly regulated cell wall peptidase gene nlpC in C. glutamicum. In contrast to previously described members of the ydaO/kimA-type riboswitches, our results suggest that the C. glutamicum nlpC riboswitch likely affects the translation instead of the transcription of its downstream gene. Although strongly regulated by different mechanisms, we show that the absence of nlpC, the first known regulatory target of c-di-AMP in C. glutamicum, is not detrimental for this organism under the tested conditions. Full article
(This article belongs to the Special Issue Complex Signal Transduction Systems in Bacteria)
Show Figures

Graphical abstract

19 pages, 3162 KiB  
Article
DisA Limits RecG Activities at Stalled or Reversed Replication Forks
by Rubén Torres, Carolina Gándara, Begoña Carrasco, Ignacio Baquedano, Silvia Ayora and Juan C. Alonso
Cells 2021, 10(6), 1357; https://doi.org/10.3390/cells10061357 - 31 May 2021
Cited by 8 | Viewed by 3272
Abstract
The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c-di-AMP) second messenger and such synthesis is suppressed upon [...] Read more.
The DNA damage checkpoint protein DisA and the branch migration translocase RecG are implicated in the preservation of genome integrity in reviving haploid Bacillus subtilis spores. DisA synthesizes the essential cyclic 3′, 5′-diadenosine monophosphate (c-di-AMP) second messenger and such synthesis is suppressed upon replication perturbation. In vitro, c-di-AMP synthesis is suppressed when DisA binds DNA structures that mimic stalled or reversed forks (gapped forks or Holliday junctions [HJ]). RecG, which does not form a stable complex with DisA, unwinds branched intermediates, and in the presence of a limiting ATP concentration and HJ DNA, it blocks DisA-mediated c-di-AMP synthesis. DisA pre-bound to a stalled or reversed fork limits RecG-mediated ATP hydrolysis and DNA unwinding, but not if RecG is pre-bound to stalled or reversed forks. We propose that RecG-mediated fork remodeling is a genuine in vivo activity, and that DisA, as a molecular switch, limits RecG-mediated fork reversal and fork restoration. DisA and RecG might provide more time to process perturbed forks, avoiding genome breakage. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Graphical abstract

18 pages, 4431 KiB  
Article
Molecular Dissection of Escherichia coli CpdB: Roles of the N Domain in Catalysis and Phosphate Inhibition, and of the C Domain in Substrate Specificity and Adenosine Inhibition
by Iralis López-Villamizar, Alicia Cabezas, Rosa María Pinto, José Canales, João Meireles Ribeiro, Joaquim Rui Rodrigues, María Jesús Costas and José Carlos Cameselle
Int. J. Mol. Sci. 2021, 22(4), 1977; https://doi.org/10.3390/ijms22041977 - 17 Feb 2021
Cited by 8 | Viewed by 3060
Abstract
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response [...] Read more.
CpdB is a 3′-nucleotidase/2′3′-cyclic nucleotide phosphodiesterase, active also with reasonable efficiency on cyclic dinucleotides like c-di-AMP (3′,5′-cyclic diadenosine monophosphate) and c-di-GMP (3′,5′-cyclic diadenosine monophosphate). These are regulators of bacterial physiology, but are also pathogen-associated molecular patterns recognized by STING to induce IFN-β response in infected hosts. The cpdB gene of Gram-negative and its homologs of gram-positive bacteria are virulence factors. Their protein products are extracytoplasmic enzymes (either periplasmic or cell–wall anchored) and can hydrolyze extracellular cyclic dinucleotides, thus reducing the innate immune responses of infected hosts. This makes CpdB(-like) enzymes potential targets for novel therapeutic strategies in infectious diseases, bringing about the necessity to gain insight into the molecular bases of their catalytic behavior. We have dissected the two-domain structure of Escherichia coli CpdB to study the role of its N-terminal and C-terminal domains (CpdB_Ndom and CpdB_Cdom). The specificity, kinetics and inhibitor sensitivity of point mutants of CpdB, and truncated proteins CpdB_Ndom and CpdB_Cdom were investigated. CpdB_Ndom contains the catalytic site, is inhibited by phosphate but not by adenosine, while CpdB_Cdom is inactive but contains a substrate-binding site that determines substrate specificity and adenosine inhibition of CpdB. Among CpdB substrates, 3′-AMP, cyclic dinucleotides and linear dinucleotides are strongly dependent on the CpdB_Cdom binding site for activity, as the isolated CpdB_Ndom showed much-diminished activity on them. In contrast, 2′,3′-cyclic mononucleotides and bis-4-nitrophenylphosphate were actively hydrolyzed by CpdB_Ndom, indicating that they are rather independent of the CpdB_Cdom binding site. Full article
(This article belongs to the Special Issue Molecular Enzymology: Advances and Applications)
Show Figures

Graphical abstract

14 pages, 2181 KiB  
Article
Cyclic Di-Adenosine Monophosphate: A Promising Adjuvant Candidate for the Development of Neonatal Vaccines
by Darío Lirussi, Sebastian Felix Weissmann, Thomas Ebensen, Ursula Nitsche-Gloy, Heiko B. G. Franz and Carlos A. Guzmán
Pharmaceutics 2021, 13(2), 188; https://doi.org/10.3390/pharmaceutics13020188 - 1 Feb 2021
Cited by 12 | Viewed by 3189
Abstract
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in [...] Read more.
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in tolerance rather than in productive immunity, thus raising concerns about the overall vaccine-mediated protective efficacy. Cyclic di-nucleotides (CDN) are bacterial second messengers that are rapidly sensed by the immune system as a danger signal, allowing the utilization of these molecules as potent activators of the immune response. We have previously shown that cyclic di-adenosine monophosphate (CDA) is a potent and versatile adjuvant capable of promoting humoral and cellular immunity. We characterize here the cytokine profiles elicited by CDA in neonatal cord blood in comparison with other promising neonatal adjuvants, such as the imidazoquinoline resiquimod (R848), which is a synthetic dual TLR7 and TLR8 agonist. We observed superior activity of CDA in eliciting T helper 1 (Th1) and T follicular helper (TfH) cytokines in cells from human cord blood when compared to R848. Additional in vivo studies in mice showed that neonatal priming in a three-dose vaccination schedule is beneficial when CDA is used as a vaccine adjuvant. Humoral antibody titers were significantly higher in mice that received a neonatal prime as compared to those that did not. This effect was absent when using other adjuvants that were reported as suitable for neonatal vaccination. The biological significance of this immune response was assessed by a challenge with a genetically modified influenza H1N1 PR8 virus. The obtained results confirmed that CDA performed better than any other adjuvant tested. Altogether, our results suggest that CDA is a potent adjuvant in vitro on human cord blood, and in vivo in newborn mice, and thus a suitable candidate for the development of neonatal vaccines. Full article
(This article belongs to the Special Issue Discovery and Evaluation of Novel Adjuvants for Vaccine Formulations)
Show Figures

Figure 1

14 pages, 2407 KiB  
Article
Activation of Gingival Fibroblasts by Bacterial Cyclic Dinucleotides and Lipopolysaccharide
by Samira Elmanfi, Herman O. Sintim, Jie Zhou, Mervi Gürsoy, Eija Könönen and Ulvi K. Gürsoy
Pathogens 2020, 9(10), 792; https://doi.org/10.3390/pathogens9100792 - 26 Sep 2020
Cited by 11 | Viewed by 3543
Abstract
Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on [...] Read more.
Human gingival fibroblasts (HGFs) recognize microbe-associated molecular patterns (MAMPs) and respond with inflammatory proteins. Simultaneous impacts of bacterial cyclic di-guanosine monophosphate (c-di-GMP), cyclic di-adenosine monophosphate (c-di-AMP), and lipopolysaccharide (LPS) on gingival keratinocytes have been previously demonstrated, but the effects of these MAMPs on other periodontal cell types, such as gingival fibroblasts, remain to be clarified. The present aim was to examine the independent and combined effects of these cyclic dinucleotides and LPS on interleukin (IL) and matrix metalloproteinase (MMP) response of HGFs. The cells were incubated with c-di-GMP and c-di-AMP, either in the presence or absence of Porphyromonas gingivalis LPS, for 2 h and 24 h. The levels of IL-8, -10, and -34, and MMP-1, -2, and -3 secreted were measured by the Luminex technique. LPS alone or together with cyclic dinucleotides elevated IL-8 levels. IL-10 levels were significantly increased in the presence of c-di-GMP and LPS after 2 h but disappeared after 24 h of incubation. Concurrent treatment of c-di-AMP and LPS elevated MMP-1 levels, whereas c-di-GMP with LPS suppressed MMP-2 levels but increased MMP-3 levels. To conclude, we produce evidence that cyclic dinucleotides interact with LPS-mediated early response of gingival fibroblasts, while late cellular response is mainly regulated by LPS. Full article
(This article belongs to the Special Issue Oral Immunology and Periodontitis)
Show Figures

Figure 1

21 pages, 3103 KiB  
Article
Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Streptococcus mitis
by Gro Herredsvela Rørvik, Krystyna Anna Liskiewicz, Fedor Kryuchkov, Ali-Oddin Naemi, Hans-Christian Aasheim, Fernanda C. Petersen, Thomas M. Küntziger and Roger Simm
Microorganisms 2020, 8(9), 1269; https://doi.org/10.3390/microorganisms8091269 - 20 Aug 2020
Cited by 12 | Viewed by 4623
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the [...] Read more.
Cyclic di-adenosine monophosphate (c-di-AMP) has emerged as an important bacterial signaling molecule that functions both as an intracellular second messenger in bacterial cells and an extracellular ligand involved in bacteria-host cross-talk. In this study, we identify and characterize proteins involved in controlling the c-di-AMP concentration in the oral commensal and opportunistic pathogen Streptococcusmitis (S. mitis). We identified three known types of c-di-AMP turnover proteins in the genome of S. mitis CCUG31611: a CdaA-type diadenylate cyclase as well as GdpP-, and DhhP-type phosphodiesterases. Biochemical analyses of purified proteins demonstrated that CdaA synthesizes c-di-AMP from ATP whereas both phosphodiesterases can utilize c-di-AMP as well as the intermediary metabolite of c-di-AMP hydrolysis 5′-phosphadenylyl-adenosine (pApA) as substrate to generate AMP, albeit at different catalytic efficiency. Using deletion mutants of each of the genes encoding c-di-AMP turnover proteins, we show by high resolution MS/MS that the intracellular concentration of c-di-AMP is increased in deletion mutants of the phosphodiesterases and non-detectable in the cdaA-mutant. We also detected pApA in mutants of the DhhP-type phosphodiesterase. Low and high levels of c-di-AMP were associated with longer and shorter chains of S. mitis, respectively indicating a role in regulation of cell division. The deletion mutant of the DhhP-type phosphodiesterase displayed slow growth and reduced rate of glucose metabolism. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

17 pages, 516 KiB  
Review
c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria
by Tazin Fahmi, Gary C. Port and Kyu Hong Cho
Genes 2017, 8(8), 197; https://doi.org/10.3390/genes8080197 - 7 Aug 2017
Cited by 79 | Viewed by 9874
Abstract
Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key [...] Read more.
Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop