Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = cyanosilylation reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3753 KiB  
Review
An Overview of Various Applications of Cadmium Carboxylate Coordination Polymers
by Gina Vasile Scaeteanu, Catalin Maxim, Mihaela Badea and Rodica Olar
Molecules 2024, 29(16), 3874; https://doi.org/10.3390/molecules29163874 - 15 Aug 2024
Cited by 3 | Viewed by 1644
Abstract
This review highlights the most recent applications of Cd(II)-carboxylate-based coordination polymers (Cd(II)-CBCPs), such as sensors, catalysts, and storage materials, in comparison with those of Zn(II) counterparts. A wide range of species with luminescence properties were designed by using proper organic fluorophores, especially a [...] Read more.
This review highlights the most recent applications of Cd(II)-carboxylate-based coordination polymers (Cd(II)-CBCPs), such as sensors, catalysts, and storage materials, in comparison with those of Zn(II) counterparts. A wide range of species with luminescence properties were designed by using proper organic fluorophores, especially a carboxylate bridging ligand combined with an ancillary N-donor species, both with a rigid structure. These characteristics, combined with the arrangement in Cd(II)-CBCPs’ structure and the intermolecular interaction, enable the sensing behavior of a plethora of various inorganic and organic pollutants. In addition, the Lewis acid behavior of Cd(II) was investigated either in developing valuable heterogeneous catalysts in acetalization, cyanosilylation, Henry or Strecker reactions, Knoevenagel condensation, or dyes or drug elimination from wastewater through photocatalysis. Furthermore, the pores structure of such derivatives induced the ability of some species to store gases or toxic dyes. Applications such as in herbicides, antibacterials, and electronic devices are also described together with their ability to generate nano-CdO species. Full article
(This article belongs to the Special Issue Zn(II) and Cd(II) Coordination Polymers: Advances and Perspectives II)
Show Figures

Figure 1

11 pages, 2369 KiB  
Article
Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid
by Xiuqi Kang, Hongyu Wang, Zhenzhong Mei, Xiaoxiang Fan and Jinzhong Gu
Molecules 2023, 28(19), 6911; https://doi.org/10.3390/molecules28196911 - 2 Oct 2023
Viewed by 1735
Abstract
Three new products, [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), [...] Read more.
Three new products, [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), and [Co2(μ6-dppa)(μ-4,4′-bipy)(H2O)2]n·3nH2O (3) were synthesized using a hydrothermal method from Cu(II) and Co(II) metal(II) chlorides, 3-(3,4-dicarboxyphenoxy)phthalic acid (H4dppa), and different auxiliary ligands, namely 2,2′-bipyridine (2,2′-bipy),1,10-phenanthroline (phen), and 4,4′-bipyridine (4,4′-bipy). Products 13 were characterized by elemental analysis, FTIR, TGA, PXRD, SEM, and single-crystal X-ray crystallography. The structure of 1 features a 1D chain of the 2C1 topological type. Compound 2 shows a discrete tetrameric complex. Product 3 demonstrates a 3D metal–organic framework (MOF) with the new topology. Their structure and topology, thermal stability, and catalytic activity were studied. In particular, excellent catalytic activity was demonstrated for copper(II)-polymer 1 in the cyanosilylation reaction at 35 °C. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

10 pages, 1466 KiB  
Article
A Mixed Heterobimetallic Y/Eu-MOF for the Cyanosilylation and Hydroboration of Carbonyls
by Estitxu Echenique-Errandonea, Mireya E. López-Vargas, Juana M. Pérez, Sara Rojas, Duane Choquesillo-Lazarte, José M. Seco, Ignacio Fernández and Antonio Rodríguez-Diéguez
Catalysts 2022, 12(3), 299; https://doi.org/10.3390/catal12030299 - 6 Mar 2022
Cited by 7 | Viewed by 3146
Abstract
Herein, to the best of our knowledge, the first heterobimetallic Y/Eu porous metal–organic framework (MOF), based on 3-amino-4-hydroxybenzoic acid (H2L) ligand, with the following formulae {[Y3.5Eu1.5L6(OH)3(H2O)3]·12DMF}n (in advance, [...] Read more.
Herein, to the best of our knowledge, the first heterobimetallic Y/Eu porous metal–organic framework (MOF), based on 3-amino-4-hydroxybenzoic acid (H2L) ligand, with the following formulae {[Y3.5Eu1.5L6(OH)3(H2O)3]·12DMF}n (in advance, namely Y/Eu-MOF), is described. The three-dimensional structure has been synthesized by solvothermal routes and thoroughly characterized, by means of single crystal X-ray diffraction, powder X-ray diffraction, electronic microscopy, ICP-AES, electrophoretic mobility, and FTIR spectra. Intriguingly, the porous nature allows for coordinated solvent molecules displacement, yielding unsaturated metal centers, which can act as a Lewis acid catalyst. This novel supramolecular entity has been tested in cyanosilylation and hydroboration reactions on carbonyl substrates of a diverse nature, exhibiting an extraordinary activity. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

15 pages, 2942 KiB  
Article
Pyrene Carboxylate Ligand Based Coordination Polymers for Microwave-Assisted Solvent-Free Cyanosilylation of Aldehydes
by Anirban Karmakar, Anup Paul, Elia Pantanetti Sabatini, M. Fátima C. Guedes da Silva and Armando J. L. Pombeiro
Molecules 2021, 26(4), 1101; https://doi.org/10.3390/molecules26041101 - 19 Feb 2021
Cited by 11 | Viewed by 2684
Abstract
The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) [...] Read more.
The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings. Full article
(This article belongs to the Special Issue Recent Advances in Modern Inorganic Chemistry)
Show Figures

Graphical abstract

11 pages, 3130 KiB  
Article
Metal(II) Coordination Polymers from Tetracarboxylate Linkers: Synthesis, Structures, and Catalytic Cyanosilylation of Benzaldehydes
by Yu Li, Chumin Liang, Xunzhong Zou, Jinzhong Gu, Marina V. Kirillova and Alexander M. Kirillov
Catalysts 2021, 11(2), 204; https://doi.org/10.3390/catal11020204 - 3 Feb 2021
Cited by 8 | Viewed by 2588
Abstract
Three 2D coordination polymers, [Cu24-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn24-dpa)(bipy)2(H2O)2] [...] Read more.
Three 2D coordination polymers, [Cu24-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn24-dpa)(bipy)2(H2O)2]n·2nH2O (3), were prepared by a hydrothermal method using metal(II) chloride salts, 3-(2′,4′-dicarboxylphenoxy)phthalic acid (H4dpa) as a linker, as well as 2,2′-bipyridine (bipy) as a crystallization mediator. Compounds 13 were obtained as crystalline solids and fully characterized. The structures of 13 were established by single-crystal X-ray diffraction, revealing 2D metal-organic networks of sql, 3,6L66, and hcb topological types. Thermal stability and catalytic behavior of 13 were also studied. In particular, zinc(II) coordination polymer 3 functions as a highly active and recoverable heterogeneous catalyst in the mild cyanosilylation of benzaldehydes with trimethylsilyl cyanide to give cyanohydrin derivatives. The influence of various parameters was investigated, including a time of reaction, a loading of catalyst and its recycling, an effect of solvent type, and a substrate scope. As a result, up to 93% product yields were attained in a catalyst recoverable and reusable system when exploring 4-nitrobenzaldehyde as a model substrate. This study contributes to widening the types of multifunctional polycarboxylic acid linkers for the design of novel coordination polymers with notable applications in heterogeneous catalysis. Full article
(This article belongs to the Special Issue MOFs for Advanced Applications)
Show Figures

Graphical abstract

16 pages, 2285 KiB  
Article
Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media
by Gonçalo A. O. Tiago, Kamran T. Mahmudov, M. Fátima C. Guedes da Silva, Ana P. C. Ribeiro, Luís C. Branco, Fedor I. Zubkov and Armando J. L. Pombeiro
Catalysts 2019, 9(3), 284; https://doi.org/10.3390/catal9030284 - 20 Mar 2019
Cited by 16 | Viewed by 4689
Abstract
The novel Ag(I) and Cu(II) coordination polymers [Ag(μ3-1κO;2:3κO′;4κN-HL)]n∙n/2H2O (1) and [Cu(en)2(μ-1κO;2κN-L)]n∙nH2O (2) [HL [...] Read more.
The novel Ag(I) and Cu(II) coordination polymers [Ag(μ3-1κO;2:3κO′;4κN-HL)]n∙n/2H2O (1) and [Cu(en)2(μ-1κO;2κN-L)]n∙nH2O (2) [HL = 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzene sulfonate] were synthesized and characterized by IR and ESI-MS spectroscopies, elemental and single crystal X-ray diffraction analyses. Compounds 1 and 2 as well as the already known complex salt [Cu(H2O)2(en)2](HL)2 (3) have been tested as homogenous catalysts for the cyanosilylation reaction of different aldehydes with trimethylsilyl cyanide, to provide cyanohydrin trimethylsilyl ethers. Coordination polymer 2 was found to be the most efficient one, with yields ranging from 76 to 88% in methanol, which increases up to 99% by addition of the ionic liquid [DHTMG][L-Lactate]. Full article
(This article belongs to the Special Issue Catalysis in Unconventional Media)
Show Figures

Graphical abstract

24 pages, 7487 KiB  
Review
Base Catalysis by Mono- and Polyoxometalates
by Keigo Kamata and Kosei Sugahara
Catalysts 2017, 7(11), 345; https://doi.org/10.3390/catal7110345 - 16 Nov 2017
Cited by 60 | Viewed by 10700
Abstract
In sharp contrast with acid-, photo-, and oxidation-catalysis by polyoxometalates, base catalysis by polyoxometalates has scarcely been investigated. The use of polyoxometalates as base catalysts have very recently received much attention and has been extensively investigated. Numerous mono- and polyoxometalate base catalyst systems [...] Read more.
In sharp contrast with acid-, photo-, and oxidation-catalysis by polyoxometalates, base catalysis by polyoxometalates has scarcely been investigated. The use of polyoxometalates as base catalysts have very recently received much attention and has been extensively investigated. Numerous mono- and polyoxometalate base catalyst systems effective for the chemical fixation of CO2, cyanosilylation of carbonyl compounds, and C–C bond forming reactions have been developed. Mono- and polyoxometalate base catalysts are classified into four main groups with respect to their structures: (a) monomeric metalates; (b) isopolyoxometalates; (c) heteropolyoxometalates; and (d) transition-metal-substituted polyoxometalates. This review article focuses on the relationship among the molecular structures, the basic properties, and the unique base catalysis of polyoxometalates on the basis of groups (a)–(d). In addition, reaction mechanisms including the specific activation of substrates and/or reagents such as the abstraction of protons, nucleophilic action toward substrates, and bifunctional action in combination with metal catalysts are comprehensively summarized. Full article
(This article belongs to the Special Issue Recent Advances in Polyoxometalate-Catalyzed Reactions)
Show Figures

Figure 1

16 pages, 1051 KiB  
Article
Synthesis of New Pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (PCU) Cyanosilylated Derivatives Using Sulphated Zirconia and Hydrotalcite as Catalysts in Microwave-Assisted Reactions under Solvent Free Conditions
by Nahí Adriana Guerra-Navarro, Laura Nadxieli Palacios-Grijalva, Deyanira Angeles-Beltrán, Guillermo E. Negrón-Silva, Leticia Lomas-Romero, Eduardo González-Zamora, Rubén Gaviño-Ramírez and Juan Navarrete-Bolaños
Molecules 2011, 16(8), 6561-6576; https://doi.org/10.3390/molecules16086561 - 4 Aug 2011
Cited by 8 | Viewed by 7442
Abstract
A comparison was made of the effectiveness of the functionalization reactions of pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (PCU) using sulphated zirconia in protection-deprotection reactions and Mg/Al hydrotalcite in a cyanosilylation reaction, under classical thermal conditions and imposing microwave radiation; improved yields and reaction times were considered. Full article
Show Figures

Figure 1

Back to TopTop