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Abstract: Herein, to the best of our knowledge, the first heterobimetallic Y/Eu porous metal–organic
framework (MOF), based on 3-amino-4-hydroxybenzoic acid (H2L) ligand, with the following for-
mulae {[Y3.5Eu1.5L6(OH)3(H2O)3]·12DMF}n (in advance, namely Y/Eu-MOF), is described. The
three-dimensional structure has been synthesized by solvothermal routes and thoroughly character-
ized, by means of single crystal X-ray diffraction, powder X-ray diffraction, electronic microscopy,
ICP-AES, electrophoretic mobility, and FTIR spectra. Intriguingly, the porous nature allows for coor-
dinated solvent molecules displacement, yielding unsaturated metal centers, which can act as a Lewis
acid catalyst. This novel supramolecular entity has been tested in cyanosilylation and hydroboration
reactions on carbonyl substrates of a diverse nature, exhibiting an extraordinary activity.

Keywords: heterobimetallic; metal-organic framework; cyanosilylation; hydroboration; yttrium;
europium

1. Introduction

Metal-organic frameworks are multifunctional, inorganic–organic systems composed
of organic ligands and metallic nodes and, since the 1990s, have emerged as promising
materials for infinite applications, among them heterogeneous catalysis [1,2].

Their intrinsic porosity, along with easy tunability and functionalization, are some of
the appealing characteristics to be employed in heterogeneous catalysis [3]. The structural
porosity provides a confined space to which substrates have access and catalysis can take
place. Furthermore, the MOF’s robustness provides stable skeletons, where unsaturated
metallic centers can act as a Lewis acid catalyst, subsequent displacement of coordinated
solvent molecules could occur, and the further activation of the substrates already accessed
through the channels might help the catalysis evolve [4].

In this context, cyanosilylation and hydroboration reactions catalyzed by heteroge-
neous catalysts, such as MOFs, are presented as interesting approaches for the formation
of cyanohydrins and alcohols [5,6]. The cyanosilylation reaction is an important synthetic
tool for C–C bond formation in organic systems, since it gives access to key intermediates
of great interest in the field of pesticides and medical application, among which α-hydroxy
acids, α-hydroxy ketones, α-amino acids, and β-amino alcohols can be mentioned [7,8].

Nonetheless, within this frame of reference, the number of reported Ln-MOF acting
as a heterogeneous catalyst in the cyanosilylation reaction results were relatively scarce
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(Table S10 summarizes the reported examples exhibiting activity, so far) [5,9–24]. Moreover,
to the best of our knowledge, lanthanide-based heterobimetallic MOFs have never been
applied. In the field of hydroboration, the context is even more unexplored. The synthesis
of alcohols through this route has been explored via MOF systems based on Ti, Fe, Co, and
Mg [25–30]; however, there are no precedents with these supramolecular entities built on
lanthanides precursors. Therefore, in this work, the first example of yttrium and europium-
based mixed MOF, with the formula {[Y3.5Eu1.5L6(OH)3(H2O)3]·12DMF}n, is presented,
taking the strong background of our group in the examination of these supramolecular
systems in catalysis [15,16].

The heterobimetallic Y/Eu-MOF presented herein was designed when looking for a
synergy and enhanced catalytic activity, with respect to their isostructural pristine counter-
parts, which were able to exhibit activity for seven cycles, with very low catalytic loading of
0.5 mol%, no catalyst leaking, TOF values of 106 h−1 and 1031 h−1, and preferred suitability
towards aldehydic and ketonic substrates for Y-MOF [15] and Eu-MOF, respectively.

Taking all into consideration, our interest lies in exploring the catalytic activity of this
novel heterobimetallic MOF, based on 3-amino-4-hydroxybenzoic acid polytopic ligand,
in the cyanosilylation and hydroboration reactions of aldehydes and ketones of diverse
nature under solvent-free and environmentally friendly conditions, in order to eventually
conclude whether catalytic activity enhances, with respect to initial counterparts.

2. Results and Discussion
2.1. Preparation of the Catalyst

The solvothermal reaction between 3-amino-4-hydroxybenzoic acid (H2L) ligand and
Y-Eu metal mixture in a basic media yields a three-dimensional, porous, metal–organic
framework that crystallizes in hexagonal P63/m space group. The asymmetric unit of
this supramolecular entity is composed of a deprotonated ligand molecule, two metal
atoms with special positions (in addition to a coordinated water molecule), and a hydroxyl
bridge, which acts as connector among neighboring metallic centers. Note that, taking into
consideration that metals are randomly distributed within the crystal structure, a tentative
formula is presented, which is corroborated by bulk properties of the material (see ICP-AES
results in Table S2 or SEM-EDX results in Figure S3).

Therefore, regarding the metal environment, two surroundings are described: nine
coordinated MN3O6 and eight coordinated MO8 environments, which, according to con-
tinuous shape measurements, confirm the spherical capped square antiprism (TCTPR-9)
and triangular dodecahedron (TDD-8) polyhedra, respectively. The former coordination
environment is composed of three hydroxyl oxygens and amino atoms from L in addition
to three additional oxygen atoms belonging to ligand hydroxyl group. The latter metallic
nucleus is composed of the coordination of a water solvent molecule, an oxygen belonging
to a hydroxyl bridge, along with six oxygen atoms, corresponding to two ligand hydroxyl
and two carboxylate moieties.

As aforementioned, hydroxyl bridges µ3-OH− join metallic centers constructing
M5(OH)3 secondary building units in the structure, being the ligand connector, among
different sbu. Regarding the connectivity of the supramolecular entity, from the topological
point of view, six-connected nodes are described, which, according to TOPOS software [31]
examination, the framework disposed of the acs network with the (49·66) point symbol.
Intrinsic porosity, characterized by three dimensional micropores of 10.1 × 13.3 Å of Y/Eu-
MOF (according to PLATON-v1.18 [32] cavities, corresponds to 19% of the volume of the
structure) and enables solvent crystallization molecules to be trapped, whiting the pores;
concretely, DMF molecules have been demonstrated to be located in the microchannels
(Figure 1).
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content of 1268 mg/L (8.34 mM Eu3+). The calculated Y to Eu relationship gives 2.25, which 
is very much in line with the proposed formula, where a proportion of 2.33 is expected. 
Additionally, SEM-EDX mapping confirms that both metals are present in single crystal. 
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Figure 1. Perspective view of the (a) metal coordination environments found in heterobimetallic
compound Y/Eu-MOF. (b) View of the pentametallic nodous, where M5(OH)3 sbu are appreciable.
(c) View for the formation of the 1 D channels; (d) the cavities present in the structure along the a
axis. Color code: Y (green), Eu (purple), C (grey), O (red), N (blue), and H (white). Note that, due
to the altering and randomly oriented disposition metals, an approximated representation has been
performed, taking into consideration proposed formula of {[Y3.5Eu1.5L6(OH)3(H2O)3]·12DMF}n.

2.2. Chemical Composition

Single-crystal X-ray diffraction allowed for proposing an approximated formula of
the heterobimetallic catalyst, which was further confirmed by FT-IR, ICP-AES, PXRD,
and SEM-EDX. For a detailed explanation of PXRD and FT-IR, please check supporting
information, Figures S1 and S2, respectively.

ICP-AES analysis, conducted in the heterobimetallic compound Y/Eu-MOF, exhibited
an yttrium content of 1672 mg/L (corresponding to 18.8 mM of Y3+) and europium content
of 1268 mg/L (8.34 mM Eu3+). The calculated Y to Eu relationship gives 2.25, which is
very much in line with the proposed formula, where a proportion of 2.33 is expected.
Additionally, SEM-EDX mapping confirms that both metals are present in single crystal.
However, the mapping spectrum, performed in one single crystal, showed relatively higher
Y3+ to Eu3+ proportions; for the crystal in which spectrum was collected, a relationship
of 3.25, regarding to Y to Eu, was calculated. This is due to the uneven distribution
of metals throughout the catalyst structure. Nonetheless, the proposed formula, which
is derived by single crystal X-ray diffraction, powder X-ray diffraction, SEM–EDX, and
ICP-AES, is consistent and summarizes the best approximation for data obtained in the
aforementioned techniques.

2.3. Chemical Stability and Electrophoretic Behavior

ζ-potential is one of the fundamental parameters normally used to measure the mag-
nitude of the electrostatic (or charge) repulsion or attraction between particles, being an
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indirect estimate of the surface charge density of the systems and helping to determine the
repulsive interactions between colloidal particles, as well as the tendency of aggregation.
Systems with high ζ-potential (−/+) are considered electrically stable, whereas colloids with
low ζ-potential (−/+) are usually referred to as systems that tend to aggregate and further
precipitate. In this study, measurements were always conducted at a fixed conductivity
of 330 µS/cm, which is equivalent to a concentration of about 3.7 mM NaCl (Figure S7).
The highest negative value of the ζ-potential, obtained with Y/Eu-MOF, was reached at
pH 10 (−35.8 ± 0.5 mV, electrophoretic mobility of −2.252 ± 0.035 µmcm/Vs), suggesting
that: (i) the dissociation of external acidic groups have occurred, conferring the overall
negative charge (Figures S8 and S9, Table S7); (ii) the MOF particles will tend to repel each
other, and there will be no tendency for the particles to come together at this basic pH,
due to this large value of ζ-potential. However, when reducing the pH of the solutions,
the ζ-potentials values started to increase, evidencing an isoelectric point between pH 4
and 5. Similar results were previously reported by our group. The Eu-MOF catalyst, with
the highest negative value of ζ-potential, was also obtained at pH 10 (−25.0 ± 0.6 mV);
however, in this case, the isoelectric point was obtained between pH 8 and 9 (Figure 2).
From an electrophoretic behavior point of view, the mixed nature of MOF confers both a
higher stability, as a function of pH, and less tendency to aggregate.
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Figure 2. Comparison of ζ-potential behavior, as a function of pH, obtained with Y/Eu-MOF and
Eu-MOF. All the measurements were performed with a constant conductivity of 330 µS/cm.

In order to determine the particle size distribution of the catalyst in the suspended
and deposited fraction, optical microscope images were assayed (Figures S4 and S5). The
catalyst was suspended in distilled water; the suspension was shaken vigorously and
subsequently left for sedimentation for 5 min, and the suspended fraction separated.
The deposited fraction was composed of 68% of the total amount of catalyst initially
weighted, having an average particle size distribution of 12 ± 6 µm (Figure S4). The
suspended fraction showed an average particle size of 8 ± 4 µm (Figure S5). Obtained
values are relatively similar to SEM images, in which single crystals and larger aggregates
are appreciated. Taking into consideration the average particle size distribution in the
suspension, it is suggested that single-crystals remain relatively well-suspended, and
aggregates of superior size tend to deposit.

2.4. Study of the Catalytic Activity

The catalytic activity of Y/Eu-MOF (0.5 mol%) was initially evaluated in the cyanosi-
lylation reaction of carbonyl compounds (Y/Eu-MOF) using TMSCN as the nucleophile,
solvent free reaction conditions, room temperature, and N2 atmosphere. These conditions
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have been already reported in our previous works, with monometallic Y or Eu MOF syn-
thetized with the same ligand H2L (3-amino-4-hydroxybenzoic acid) [15], obtaining only
8% conversion after 14 h when the blank reaction was tested.

The scope of the reaction was evaluated with five highly reactive aldehydes of different
natures, such as aromatic, heteroaromatic, and aliphatic, demonstrating that independently
of the nature of the substituent, the reaction takes place with very good to excellent
conversions (89–99%), after only 24 h (Scheme 1). Later on, less reactive and sterically
demanding ketones were tested, observing a significant decrease in conversion (74–77%),
when electron-donating or -withdrawing substituents were located at the para-position,
whereas, again, excellent conversion were achieved with aromatic, heteroaromatic, and
aliphatic substrates (91–99%) (Scheme 1). These results overpass the ones published, until
the moment for other groups [21–23], and have similar catalytic behaviour with our pristine
Eu-MOF.
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Scheme 1. Scope of the cyanosilylation reaction using aldehydes and ketones.

As a continuation of the study of the catalytic activity of Y/Eu-MOF, we decided to
go one step forward and test, for the first time, the hydroboration reaction of carbonyl
compounds with a lanthanide based-MOF catalyst. For that, the optimization of the reaction
conditions was carried out (Table S8). First of all, the reaction was tested with solvents
of different natures, as well as without solvent (entries 1–5), obtaining the best result in
the absence of solvent (entry 1, Table S8). Finally, the amount of catalyst was also tested
(entries 6–8), observing that, with a slight increase from 0.35 to 0.5 mol%, the reaction took
place with full conversion (entry 6).

With the optimal reaction conditions in hand, the scope of the reaction was evaluated
again, using a broad range of different ketones (Scheme 2). The use of electron-donating
groups in the para-position of the aromatic ring negatively influenced the catalytic reaction,
causing the reaction time to increase from 24 to 48 or even 120 h, in order to obtain
moderate conversions (45–67%). This influence on the increase in reaction time did not
take place when electron-withdrawing substituents were used, observing that, regardless
of the position of the aromatic ring in which the substituents were found, yields were
good (71–90%). Furthermore, heteroaromatic ketones reached good results in only 24 h
of reaction (88%). The steric hindrance of ketones, such as 1j and 1p, needed superior
reaction times of 48 and 120 h, respectively, in order to achieve full conversion. Aliphatic
ketones, with different natures, were tested and provided good results (95–99%). Then, we
decided to test cyclic ketones, which are usually less employed, obtaining moderate results



Catalysts 2022, 12, 299 6 of 10

(61–63%). Finally, the chemoselectivity of the reaction was pursued by employing ketones
bearing double bonds and ester groups, achieving, in both cases, the specific reduction of
the carbonyls; although, in the latter, the conversion was lower than 5%, due to the poor
solubility of the substrate in HBpin.

1 
 

 

Scheme 2. Scope of the hydroboration reaction of ketones. Reaction carried out for 24 h. a Reaction
carried out during 24 h; b Reaction carried out during 48 h; c Reaction carried out during 120 h.

Another important issue that needed to be addressed was if our catalysis was the
object of hidden boron catalysis [33]. To distinguish between “true” catalysis and BH3
catalysis, for reactions using HBpin, we performed two complementary experiments. With
the help of 1H and 11B NMR, we pursued the possible MOF-promoted BH3 formation by
monitoring the mixture of our MOF catalyst and HBpin under catalytic conditions. The
lack of BH3 signals was evidenced during the whole experiment, proving that our MOF
catalyst does not promote formation of BH3. In addition, we performed the hydroboration
of acetophenone with BH3·THF, instead of with HBpin, showing no substrate conversion
and, therefore, further verifying that, under our catalytic conditions, hidden boron catalysis
does not exist.

2.5. Recyclability and Leaching Studies of the Catalyst

Recyclability tests were also investigated, in order to study the heterogeneous na-
ture of the catalyst. After standard reaction conditions, using acetophenone as substrate
(Schemes S1 and S2), the catalyst was isolated from the reaction mixture via centrifugation
and washed several times with dichloromethane. The catalyst was dried under vacuum
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and then charged with a new set of reagents, in order to evaluate its recyclability. The corre-
sponding products were obtained in a 28% and 61% for cyanosilylation and hydroboration,
respectively, and, in another consecutive cycle, 0% and 15% of conversion, respectively, was
achieved (Figure S10). A leaching test was also carried out, in the case of the hydroboration
reaction (Scheme S3). For that, after the first and second reaction of recyclability test, the
catalyst was removed by centrifugation and supernatant was filtered through a plug of
celite and dried under vacuum. Then, 1-(pyridin-2-yl)ethan-1-one (1i) and HBpin were
added to the crude of the corresponding reaction cycle, and the reaction was stirred under
inert N2 atmosphere at room temperature for 24 h. After that time, an aliquot was analysed
by 1H NMR, obtaining, in the first cycle, a 38% of conversion and, in the second cycle, a
13% of product, corroborating the leaching of Y or Eu.

2.6. Green Chemistry Metrics

Green chemistry metrics such as atomic economy (AE), mass intensity (MI), reaction
mass efficiency (RME), and carbon efficiency (CE) were calculated for both reactions
studied (Table S9), in order to evaluate if the reactions are eco-friendly and can overcome
environmental and health problems. The obtained values for cyanosilylation reaction were
100% of AE, 1.127 for MI, 95.7% for RME, and 96.8% for CE. These results are comparable
to those described previously for related lanthanide-based MOFs [15,16,19,20]. In the case
of the hydroboration reaction, these values decreased considerably, down to 49.1%, 2.406,
46.8%, and 52.1% for AE, MI, RME, and CE, respectively, due to the final hydrolysis and
consequent loss of atoms in the final product (Table S9).

3. Materials and Methods
3.1. Materials

All experiments involving moisture-sensitive compounds were performed under an
inert atmosphere of N2 using standard techniques. Unless otherwise indicated, reagents
and substrates were purchased from commercial sources and used as received. Metallic
precursors, such as europium (III) nitrate pentahydrate (99.9%, Alfa Aesar), and yttrium
(III) nitrate hexahydrate (99.9% of purity, Fluorochem), were used as received, as well as 3-
amino-4-hydroxybenzoic acid ligand (H2L, C7H7NO3, 97% of purity), which was purchased
from Fluorochem. Solvents not required to be dry were purchased as technical grade and
used as received. Conversion values relative to the limiting reagent were calculated from the
1H NMR spectra of the reaction crudes. Isolated products of cyanosilylation reaction were
obtained after centrifugation (12,300 rpm, 5 min, 20 ◦C) and washed with dichloromethane
(2 × 0.5 mL), in order to remove the catalyst or column chromatography in silica gel using
hexane as eluent. For the hydroboration reaction, first of all the hydrolysis of the product
was carried out adding NaOH (0.1 M, 0.5 mL) and Et2O (0.5 mL) and stirring the mixture
overnight; after that, the catalyst was removed via centrifugation (12,300 rpm, 5 min, 20 ◦C)
and washed with dichloromethane (2 × 0.5 mL).

3.2. Synthesis of Catalyst and General Procedures of Catalysis

Synthesis of {[Y3.5Eu1.5L6(OH)3(H2O)3]·12DMF}n, namely Y/Eu-MOF: The 3-amino-
4-hydroxybenzoic acid (0.010 g, 0.0625 mmol) was dissolved in 0.2 mL of DMF containing
10 µL of Et3N (0.072 mmol). In a separate vial, Eu(NO3)3·5H2O (0.006 g, 0.0145 mmol)
and Y(NO3)3·6H2O (0.011 g, 0.0289 mmol) salts were dissolved into a 0.8 mL of distilled
water. After dissolution, 0.2 mL of DMF and 0.8 mL of H2O were added to the metal and
ligand solutions, respectively. Finally, the metal solution was added dropwise and under
continuous agitation to the ligand solution. The obtained brown solution was introduced to
the oven at 100 ◦C for 2 h in a screw-capped vial (6 mL) to yield hexagonal single crystals.
For the reaction scaling up synthetic procedure, consult the supporting material.

General procedure for the cyanosilylation reaction: In a 1 mL vial, with a septum
screw capped, equipped with a stirring bar, Y/Eu-MOF catalyst (0.5 mol%) was weighed.
Subsequently, the corresponding amount of carbonylic compound 1 (0.25 mmol) was
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added, followed by trimethylsilyl cyanide (TMSCN) (34 µL, 0.275 mmol, 1.1 equiv.), and
the reaction was stirred under inert N2 atmosphere at room temperature for 24 h. Once the
reaction was finished, the catalyst was removed by centrifugation (12,300 rpm, 5 min) and
washed with DCM (2 × 0.5 mL), obtaining the corresponding pure products 2 and 3, after
removal of the solvent with rotary evaporator. When not full conversion was reached, the
product was purified by column chromatography using hexane as eluent.

General procedure for the hydroboration reaction: In a 1 mL vial, with a septum
screw capped, equipped with a stirring bar, Y/Eu-MOF catalyst (0.5 mol%) was weighed.
Subsequently, the corresponding amount of carbonylic compound 1 (0.25 mmol) was added,
followed by pinacolborane (HBpin) (40 µL, 0.275 mmol, 1.1 equiv.), and the reaction was
stirred under inert N2 atmosphere at room temperature for the corresponding time, as
indicated on the table. After that time, the hydrolysis of the final product was carried out
adding NaOH (0.1 M, 0.5 mL) and Et2O (0.5 mL), and the mixture was stirred overnight.
Once the reaction was finished, the catalyst was removed by centrifugation (12,300 rpm,
5 min) and washed with DCM (2 × 0.5 mL), obtaining the corresponding product 4 after
removal of the solvent with rotary evaporator. When not full conversion was reached the
product was purified by column chromatography.

4. Conclusions

All in all, to the best of our knowledge, we report the first mixed heterobimetallic
Y/Eu-MOF, based on a 3-amino-4-hydroxylbenzoic acid ligand, with impressive catalytic
efficiency in the cyanosilylation and hydroboration reaction of carbonyl compounds, but
reduced recyclability, compared to the related MOFs. The catalyst has been thoroughly char-
acterized by means of X-ray crystallography, FTIR, ICP-AES, and PXRD; its electrophoretic
behavior, as a function of pH, has been also assayed, showing a negative surface charge
with a very low tendency to aggregate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12030299/s1. Table S1: Elemental analysis of compounds
Y/Eu-MOF. Table S2: ICP-AES results of compound Y/Eu-MOF. Table S3: Crystallographic data
and structure refinement details of compound Y/Eu-MOF. Table S4: Selected bond lengths (Å) and
angles (◦) for compound Y/Eu-MOF. Table S5: Table of the continuous Shape Measurements for
the MN3O6 coordination environment. Table S6: Table of the continuous Shape Measurements for
the MO8 coordination environment. Table S7: Electrophoretic mobility and ζ-potential dependence,
with the pH of the Y/Eu-MOFs particles dispersed in water. Conductivity fixed at 330 µS/cm.
Table S8: Optimization of the reaction conditions in the hydroboration reaction. Table S9: Green
metrics calculated for Y/Eu-MOF catalyst. Table S10: Catalytic cyanosilylation of benzaldehyde
performances of Ln-MOFs, as reported in the literature. Figure S1: Figure of the pattern matching
analysis and experimental PXRD for Y/Eu-MOF. Figure S2: Figure of the infrared spectra of the
ligand and Y/Eu-MOF. Figure S3: SEM and EDS mapping of bulk material of Y/Eu-MOF. Figure
S4: Images and particle size distribution (an overall of 250 particles) in the deposited fraction of
Y/Eu-MOF catalyst non-suspended in water (about a 68% of the total amount), determined from
optical microscope images. Figure S5: Images and particle size distribution (an overall of 250 particles)
of Y/Eu-MOF crystals in the fraction steadily suspended in water (about a 32% of the total amount),
determined from optical microscope images. Figure S6: Comparation of the particle size distribution
of Y/Eu-MOF in the fraction steadily suspended in water and the non-suspended, determined from
optical microscope images. Figure S7: Calibration line of conductivity (µS/cm) vs [NaCl] (mol/L).
Figure S8: ζ-potential (mV) dependence with the pH of the Y/Eu-MOF. All the measurements were
performed with constant conductivity of 330 µS/cm. Figure S9: Electrophoretic mobility (µm·cm/V·s)
dependence with the pH of the Y/Eu-MOF. All the measurements were performed with constant
conductivity of 330 µS/cm. Figure S10: Study of the recyclability of Y/Eu-MOF (0.5 mol%) catalyst
on the cyanosilylation and hydroboration reaction of acetophenone as carbonyl substrate. Figure S11:
Analysis of the TOF (h−1) obtained in the cyanosilylation reaction of acetophenone at different times
of reaction with Y/Eu-MOF (0.5 mol%), with the optimized reaction conditions. Figure S12: Analysis
of the TOF (h−1) obtained in the hydroboration reaction acetophenone at different times of reaction
with Y/Eu-MOF (0.5 mol%), with the optimized reaction conditions. Scheme S1: Reaction conditions

https://www.mdpi.com/article/10.3390/catal12030299/s1
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used for the study of recyclability of Y/Eu-MOF catalysts in the cyanosilylation reaction. Scheme S2:
Reaction conditions used for the study of recyclability of Y/Eu-MOF catalysts in the hydroboration
reaction. Scheme S3: Leaching test, carried out after the first and second cycles.
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