Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = custom motion estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 876 KiB  
Article
Self-Contained Earthquake Early Warning System Based on Characteristic Period Computed in the Frequency Domain
by Marinel Costel Temneanu, Codrin Donciu and Elena Serea
Appl. Sci. 2025, 15(16), 9026; https://doi.org/10.3390/app15169026 - 15 Aug 2025
Abstract
This study presents the design, implementation, and experimental validation of a self-contained earthquake early warning system (EEWS) based on real-time frequency-domain analysis of ground motion. The proposed system integrates a low-noise triaxial micro-electro-mechanical system (MEMS) accelerometer with a high-performance microcontroller, enabling autonomous seismic [...] Read more.
This study presents the design, implementation, and experimental validation of a self-contained earthquake early warning system (EEWS) based on real-time frequency-domain analysis of ground motion. The proposed system integrates a low-noise triaxial micro-electro-mechanical system (MEMS) accelerometer with a high-performance microcontroller, enabling autonomous seismic event detection without dependence on external communications or centralized infrastructure. The characteristic period of ground motion (τc) is estimated using a spectral moment method applied to the first three seconds of vertical acceleration following P-wave arrival. Event triggering is based on a short-term average/long-term average (STA/LTA) algorithm, with alarm logic incorporating both spectral and amplitude thresholds to reduce false positives from low-intensity or distant events. Experimental validation was conducted using a custom-built uniaxial shaking table, replaying 10 real earthquake records (Mw 4.1–7.7) in 20 repeated trials each. Results show high repeatability in τc estimation and strong correlation with event magnitude, demonstrating the system’s reliability. The findings confirm that modern embedded platforms can deliver rapid, robust, and cost-effective seismic warning capabilities. The proposed EEW solution is well-suited for deployment in critical infrastructure and resource-limited seismic regions, supporting scalable and decentralized early warning applications. Full article
(This article belongs to the Special Issue Advanced Technology and Data Analysis in Seismology)
Show Figures

Figure 1

18 pages, 4799 KiB  
Article
An Adaptive CNN-Based Approach for Improving SWOT-Derived Sea-Level Observations Using Drifter Velocities
by Sarah Asdar and Bruno Buongiorno Nardelli
Remote Sens. 2025, 17(15), 2681; https://doi.org/10.3390/rs17152681 - 3 Aug 2025
Viewed by 200
Abstract
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. [...] Read more.
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented high-resolution observations of sea-surface height. However, their direct use in ocean circulation studies is complicated by the presence of small-scale unbalanced motion signals and instrumental noise, which hinder accurate estimation of geostrophic velocities. To address these limitations, we developed an adaptive convolutional neural network (CNN)-based filtering technique that refines SWOT-derived sea-level observations. The network includes multi-head attention layers to exploit information on concurrent wind fields and standard altimetry interpolation errors. We train the model with a custom loss function that accounts for the differences between geostrophic velocities computed from SWOT sea-surface topography and simultaneous in-situ drifter velocities. We compare our method to existing filtering techniques, including a U-Net-based model and a variational noise-reduction filter. Our adaptive-filtering CNN produces accurate velocity estimates while preserving small-scale features and achieving a substantial noise reduction in the spectral domain. By combining satellite and in-situ data with machine learning, this work demonstrates the potential of an adaptive CNN-based filtering approach to enhance the accuracy and reliability of SWOT-derived sea-level and velocity estimates, providing a valuable tool for global oceanographic applications. Full article
Show Figures

Figure 1

20 pages, 3710 KiB  
Article
An Accurate LiDAR-Inertial SLAM Based on Multi-Category Feature Extraction and Matching
by Nuo Li, Yiqing Yao, Xiaosu Xu, Shuai Zhou and Taihong Yang
Remote Sens. 2025, 17(14), 2425; https://doi.org/10.3390/rs17142425 - 12 Jul 2025
Viewed by 532
Abstract
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity [...] Read more.
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity to noise and sparsity, and the inclusion of redundant or low-quality feature correspondences. These weaknesses hinder their performance in complex or dynamic environments and fail to meet the reliability requirements of autonomous systems. To overcome these challenges, we propose a novel and accurate LiDAR-inertial SLAM framework with three major contributions. First, we employ a robust multi-category feature extraction method based on principal component analysis (PCA), which effectively filters out noisy and weakly structured points, ensuring stable feature representation. Second, to suppress outlier correspondences and enhance pose estimation reliability, we introduce a coarse-to-fine two-stage feature correspondence selection strategy that evaluates geometric consistency and structural contribution. Third, we develop an adaptive weighted pose estimation scheme that considers both distance and directional consistency, improving the robustness of feature matching under varying scene conditions. These components are jointly optimized within a sliding-window-based factor graph, integrating LiDAR feature factors, IMU pre-integration, and loop closure constraints. Extensive experiments on public datasets (KITTI, M2DGR) and a custom-collected dataset validate the proposed method’s effectiveness. Results show that our system consistently outperforms state-of-the-art approaches in accuracy and robustness, particularly in scenes with sparse structure, motion distortion, and dynamic interference, demonstrating its suitability for reliable real-world deployment. Full article
(This article belongs to the Special Issue LiDAR Technology for Autonomous Navigation and Mapping)
Show Figures

Figure 1

18 pages, 3556 KiB  
Article
Multi-Sensor Fusion for Autonomous Mobile Robot Docking: Integrating LiDAR, YOLO-Based AprilTag Detection, and Depth-Aided Localization
by Yanyan Dai and Kidong Lee
Electronics 2025, 14(14), 2769; https://doi.org/10.3390/electronics14142769 - 10 Jul 2025
Viewed by 674
Abstract
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based [...] Read more.
Reliable and accurate docking remains a fundamental challenge for autonomous mobile robots (AMRs) operating in complex industrial environments with dynamic lighting, motion blur, and occlusion. This study proposes a novel multi-sensor fusion-based docking framework that significantly enhances robustness and precision by integrating YOLOv8-based AprilTag detection, depth-aided 3D localization, and LiDAR-based orientation correction. A key contribution of this work is the construction of a custom AprilTag dataset featuring real-world visual disturbances, enabling the YOLOv8 model to achieve high-accuracy detection and ID classification under challenging conditions. To ensure precise spatial localization, 2D visual tag coordinates are fused with depth data to compute 3D positions in the robot’s frame. A LiDAR group-symmetry mechanism estimates heading deviation, which is combined with visual feedback in a hybrid PID controller to correct angular errors. A finite-state machine governs the docking sequence, including detection, approach, yaw alignment, and final engagement. Simulation and experimental results demonstrate that the proposed system achieves higher docking success rates and improved pose accuracy under various challenging conditions compared to traditional vision- or LiDAR-only approaches. Full article
Show Figures

Figure 1

25 pages, 2723 KiB  
Article
A Human-Centric, Uncertainty-Aware Event-Fused AI Network for Robust Face Recognition in Adverse Conditions
by Akmalbek Abdusalomov, Sabina Umirzakova, Elbek Boymatov, Dilnoza Zaripova, Shukhrat Kamalov, Zavqiddin Temirov, Wonjun Jeong, Hyoungsun Choi and Taeg Keun Whangbo
Appl. Sci. 2025, 15(13), 7381; https://doi.org/10.3390/app15137381 - 30 Jun 2025
Cited by 2 | Viewed by 433
Abstract
Face recognition systems often falter when deployed in uncontrolled settings, grappling with low light, unexpected occlusions, motion blur, and the degradation of sensor signals. Most contemporary algorithms chase raw accuracy yet overlook the pragmatic need for uncertainty estimation and multispectral reasoning rolled into [...] Read more.
Face recognition systems often falter when deployed in uncontrolled settings, grappling with low light, unexpected occlusions, motion blur, and the degradation of sensor signals. Most contemporary algorithms chase raw accuracy yet overlook the pragmatic need for uncertainty estimation and multispectral reasoning rolled into a single framework. This study introduces HUE-Net—a Human-centric, Uncertainty-aware, Event-fused Network—designed specifically to thrive under severe environmental stress. HUE-Net marries the visible RGB band with near-infrared (NIR) imagery and high-temporal-event data through an early-fusion pipeline, proven more responsive than serial approaches. A custom hybrid backbone that couples convolutional networks with transformers keeps the model nimble enough for edge devices. Central to the architecture is the perturbed multi-branch variational module, which distills probabilistic identity embeddings while delivering calibrated confidence scores. Complementing this, an Adaptive Spectral Attention mechanism dynamically reweights each stream to amplify the most reliable facial features in real time. Unlike previous efforts that compartmentalize uncertainty handling, spectral blending, or computational thrift, HUE-Net unites all three in a lightweight package. Benchmarks on the IJB-C and N-SpectralFace datasets illustrate that the system not only secures state-of-the-art accuracy but also exhibits unmatched spectral robustness and reliable probability calibration. The results indicate that HUE-Net is well-positioned for forensic missions and humanitarian scenarios where trustworthy identification cannot be deferred. Full article
Show Figures

Figure 1

22 pages, 5516 KiB  
Article
Technology and Method Optimization for Foot–Ground Contact Force Detection in Wheel-Legged Robots
by Chao Huang, Meng Hong, Yaodong Wang, Hui Chai, Zhuo Hu, Zheng Xiao, Sijia Guan and Min Guo
Sensors 2025, 25(13), 4026; https://doi.org/10.3390/s25134026 - 27 Jun 2025
Viewed by 429
Abstract
Wheel-legged robots combine the advantages of both wheeled robots and traditional quadruped robots, enhancing terrain adaptability but posing higher demands on the perception of foot–ground contact forces. However, existing approaches still suffer from limited accuracy in estimating contact positions and three-dimensional contact forces [...] Read more.
Wheel-legged robots combine the advantages of both wheeled robots and traditional quadruped robots, enhancing terrain adaptability but posing higher demands on the perception of foot–ground contact forces. However, existing approaches still suffer from limited accuracy in estimating contact positions and three-dimensional contact forces when dealing with flexible tire–ground interactions. To address this challenge, this study proposes a foot–ground contact state detection technique and optimization method based on multi-sensor fusion and intelligent modeling for wheel-legged robots. First, finite element analysis (FEA) is used to simulate strain distribution under various contact conditions. Combined with global sensitivity analysis (GSA), the optimal placement of PVDF sensors is determined and experimentally validated. Subsequently, under dynamic gait conditions, data collected from the PVDF sensor array are used to predict three-dimensional contact forces through Gaussian process regression (GPR) and artificial neural network (ANN) models. A custom experimental platform is developed to replicate variable gait frequencies and collect dynamic contact data for validation. The results demonstrate that both GPR and ANN models achieve high accuracy in predicting dynamic 3D contact forces, with normalized root mean square error (NRMSE) as low as 8.04%. The models exhibit reliable repeatability and generalization to novel inputs, providing robust technical support for stable contact perception and motion decision-making in complex environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

24 pages, 30185 KiB  
Article
3D Digital Human Generation from a Single Image Using Generative AI with Real-Time Motion Synchronization
by Myeongseop Kim, Taehyeon Kim and Kyung-Taek Lee
Electronics 2025, 14(4), 777; https://doi.org/10.3390/electronics14040777 - 17 Feb 2025
Cited by 1 | Viewed by 3687
Abstract
The generation of 3D digital humans has traditionally relied on multi-view imaging systems and large-scale datasets, posing challenges in cost, accessibility, and real-time applicability. To overcome these limitations, this study presents an efficient pipeline that constructs high-fidelity 3D digital humans from a single [...] Read more.
The generation of 3D digital humans has traditionally relied on multi-view imaging systems and large-scale datasets, posing challenges in cost, accessibility, and real-time applicability. To overcome these limitations, this study presents an efficient pipeline that constructs high-fidelity 3D digital humans from a single frontal image. By leveraging generative AI, the system synthesizes additional views and generates UV maps compatible with the SMPL-X model, ensuring anatomically accurate and photorealistic reconstructions. The generated 3D models are imported into Unity 3D, where they are rigged for real-time motion synchronization using BlazePose-based lightweight pose estimation. To further enhance motion realism, custom algorithms—including ground detection and rotation smoothing—are applied, improving movement stability and fluidity. The system was rigorously evaluated through both quantitative and qualitative analyses. Results show an average generation time of 211.1 s, segmentation accuracy of 92.1%, and real-time rendering at 64.4 FPS. In qualitative assessments, expert reviewers rated the system using the SUS usability framework and heuristic evaluation, confirming its usability and effectiveness. This method eliminates the need for multi-view cameras or depth sensors, significantly reducing the barrier to entry for real-time 3D avatar creation and interactive AI-driven applications. It has broad applications in virtual reality (VR), gaming, digital content creation, AI-driven simulation, digital twins, and telepresence systems. By introducing a scalable and accessible 3D modeling pipeline, this research lays the groundwork for future advancements in immersive and interactive environments. Full article
(This article belongs to the Special Issue AI Synergy: Vision, Language, and Modality)
Show Figures

Figure 1

21 pages, 7811 KiB  
Article
Research on Broiler Mortality Identification Methods Based on Video and Broiler Historical Movement
by Hongyun Hao, Fanglei Zou, Enze Duan, Xijie Lei, Liangju Wang and Hongying Wang
Agriculture 2025, 15(3), 225; https://doi.org/10.3390/agriculture15030225 - 21 Jan 2025
Viewed by 878
Abstract
The presence of dead broilers within a flock can be significant vectors for disease transmission and negatively impact the overall welfare of the remaining broilers. This study introduced a dead broiler detection method that leverages the fact that dead broilers remain stationary within [...] Read more.
The presence of dead broilers within a flock can be significant vectors for disease transmission and negatively impact the overall welfare of the remaining broilers. This study introduced a dead broiler detection method that leverages the fact that dead broilers remain stationary within the flock in videos. Dead broilers were identified through the analysis of the historical movement information of each broiler in the video. Firstly, the frame difference method was utilized to capture key frames in the video. An enhanced segmentation network, YOLOv8-SP, was then developed to obtain the mask coordinates of each broiler, and an optical flow estimation method was employed to generate optical flow maps and evaluate their movement. An average optical flow intensity (AOFI) index of broilers was defined and calculated to evaluate the motion level of each broiler in each key frame. With the AOFI threshold, broilers in the key frames were classified into candidate dead broilers and active live broilers. Ultimately, the identification of dead broilers was achieved by analyzing the frequency of each broiler being judged as a candidate death in all key frames within the video. We incorporated the parallelized patch-aware attention (PPA) module into the backbone network and improved the overlaps function with the custom power transform (PT) function. The box and mask segmentation mAP of the YOLOv8-SP model increased by 1.9% and 1.8%, respectively. The model’s target recognition performance for small targets and partially occluded targets was effectively improved. False and missed detections of dead broilers occurred in 4 of the 30 broiler testing videos, and the accuracy of the dead broiler identification algorithm proposed in this study was 86.7%. Full article
(This article belongs to the Special Issue Modeling of Livestock Breeding Environment and Animal Behavior)
Show Figures

Figure 1

44 pages, 4022 KiB  
Review
Neural Network for Enhancing Robot-Assisted Rehabilitation: A Systematic Review
by Nafizul Alam, Sk Hasan, Gazi Abdullah Mashud and Subodh Bhujel
Actuators 2025, 14(1), 16; https://doi.org/10.3390/act14010016 - 6 Jan 2025
Cited by 5 | Viewed by 2916
Abstract
The integration of neural networks into robotic exoskeletons for physical rehabilitation has become popular due to their ability to interpret complex physiological signals. Surface electromyography (sEMG), electromyography (EMG), electroencephalography (EEG), and other physiological signals enable communication between the human body and robotic systems. [...] Read more.
The integration of neural networks into robotic exoskeletons for physical rehabilitation has become popular due to their ability to interpret complex physiological signals. Surface electromyography (sEMG), electromyography (EMG), electroencephalography (EEG), and other physiological signals enable communication between the human body and robotic systems. Utilizing physiological signals for communicating with robots plays a crucial role in robot-assisted neurorehabilitation. This systematic review synthesizes 44 peer-reviewed studies, exploring how neural networks can improve exoskeleton robot-assisted rehabilitation for individuals with impaired upper limbs. By categorizing the studies based on robot-assisted joints, sensor systems, and control methodologies, we offer a comprehensive overview of neural network applications in this field. Our findings demonstrate that neural networks, such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), Radial Basis Function Neural Networks (RBFNNs), and other forms of neural networks significantly contribute to patient-specific rehabilitation by enabling adaptive learning and personalized therapy. CNNs improve motion intention estimation and control accuracy, while LSTM networks capture temporal muscle activity patterns for real-time rehabilitation. RBFNNs improve human–robot interaction by adapting to individual movement patterns, leading to more personalized and efficient therapy. This review highlights the potential of neural networks to revolutionize upper limb rehabilitation, improving motor recovery and patient outcomes in both clinical and home-based settings. It also recommends the future direction of customizing existing neural networks for robot-assisted rehabilitation applications. Full article
Show Figures

Figure 1

17 pages, 5134 KiB  
Article
Foul Detection for Table Tennis Serves Using Deep Learning
by Guang Liang Yang, Minh Nguyen, Wei Qi Yan and Xue Jun Li
Electronics 2025, 14(1), 27; https://doi.org/10.3390/electronics14010027 - 25 Dec 2024
Viewed by 1533
Abstract
Detecting serve fouls in table tennis is critical for ensuring fair play. This paper explores the development of foul detection of table tennis serves by leveraging 3D ball trajectory analysis and deep learning techniques. Using a multi-camera setup and a custom dataset, we [...] Read more.
Detecting serve fouls in table tennis is critical for ensuring fair play. This paper explores the development of foul detection of table tennis serves by leveraging 3D ball trajectory analysis and deep learning techniques. Using a multi-camera setup and a custom dataset, we employed You Only Look Once (YOLO) models for ball detection and Transformers for critical trajectory point identification. We achieved 87.52% precision in detecting fast-moving balls and an F1 score of 0.93 in recognizing critical serve points such as the throw, highest, and hit points. These results enable precise serve segmentation and robust foul detection based on criteria like toss height and vertical angle compliance. The approach simplifies traditional methods by focusing solely on the ball motion, eliminating computationally intensive pose estimation. Despite limitations such as a controlled experimental environment, the findings demonstrate the feasibility of artificial intelligence (AI)-driven referee systems for table tennis games, providing a foundation for broader applications in sports officiating. Full article
Show Figures

Figure 1

17 pages, 8979 KiB  
Article
Action Recognition in Videos through a Transfer-Learning-Based Technique
by Elizabeth López-Lozada, Humberto Sossa, Elsa Rubio-Espino and Jesús Yaljá Montiel-Pérez
Mathematics 2024, 12(20), 3245; https://doi.org/10.3390/math12203245 - 17 Oct 2024
Cited by 2 | Viewed by 1932
Abstract
In computer vision, human action recognition is a hot topic, popularized by the development of deep learning. Deep learning models typically accept video input without prior processing and train them to achieve recognition. However, conducting preliminary motion analysis can be beneficial in directing [...] Read more.
In computer vision, human action recognition is a hot topic, popularized by the development of deep learning. Deep learning models typically accept video input without prior processing and train them to achieve recognition. However, conducting preliminary motion analysis can be beneficial in directing the model training to prioritize the motion of individuals with less priority for the environment in which the action occurs. This paper puts forth a novel methodology for human action recognition based on motion information that employs transfer-learning techniques. The proposed method comprises four stages: (1) human detection and tracking, (2) motion estimation, (3) feature extraction, and (4) action recognition using a two-stream model. In order to develop this work, a customized dataset was utilized, comprising videos of diverse actions (e.g., walking, running, cycling, drinking, and falling) extracted from multiple public sources and websites, including Pexels and MixKit. This realistic and diverse dataset allowed for a comprehensive evaluation of the proposed method, demonstrating its effectiveness in different scenarios and conditions. Furthermore, the performance of seven pre-trained models for feature extraction was evaluated. The models analyzed were Inception-v3, MobileNet-v2, MobileNet-v3-L, VGG-16, VGG-19, Xception, and ConvNeXt-L. The results demonstrated that the ConvNeXt-L model yielded the most optimal outcomes. Furthermore, using pre-trained models for feature extraction facilitated the training process on a personal computer with a single graphics processing unit, achieving an accuracy of 94.9%. The experimental findings and outcomes suggest that integrating motion information enhances action recognition performance. Full article
(This article belongs to the Special Issue Deep Neural Networks: Theory, Algorithms and Applications)
Show Figures

Figure 1

14 pages, 15950 KiB  
Article
Uncertainty-Aware Depth Network for Visual Inertial Odometry of Mobile Robots
by Jimin Song, HyungGi Jo, Yongsik Jin and Sang Jun Lee
Sensors 2024, 24(20), 6665; https://doi.org/10.3390/s24206665 - 16 Oct 2024
Cited by 2 | Viewed by 4562
Abstract
Simultaneous localization and mapping, a critical technology for enabling the autonomous driving of vehicles and mobile robots, increasingly incorporates multi-sensor configurations. Inertial measurement units (IMUs), known for their ability to measure acceleration and angular velocity, are widely utilized for motion estimation due to [...] Read more.
Simultaneous localization and mapping, a critical technology for enabling the autonomous driving of vehicles and mobile robots, increasingly incorporates multi-sensor configurations. Inertial measurement units (IMUs), known for their ability to measure acceleration and angular velocity, are widely utilized for motion estimation due to their cost efficiency. However, the inherent noise in IMU measurements necessitates the integration of additional sensors to facilitate spatial understanding for mapping. Visual–inertial odometry (VIO) is a prominent approach that combines cameras with IMUs, offering high spatial resolution while maintaining cost-effectiveness. In this paper, we introduce our uncertainty-aware depth network (UD-Net), which is designed to estimate both depth and uncertainty maps. We propose a novel loss function for the training of UD-Net, and unreliable depth values are filtered out to improve VIO performance based on the uncertainty maps. Experiments were conducted on the KITTI dataset and our custom dataset acquired from various driving scenarios. Experimental results demonstrated that the proposed VIO algorithm based on UD-Net outperforms previous methods with a significant margin. Full article
Show Figures

Figure 1

30 pages, 716 KiB  
Review
Advancing Arctic Sea Ice Remote Sensing with AI and Deep Learning: Opportunities and Challenges
by Wenwen Li, Chia-Yu Hsu and Marco Tedesco
Remote Sens. 2024, 16(20), 3764; https://doi.org/10.3390/rs16203764 - 10 Oct 2024
Cited by 9 | Viewed by 6891
Abstract
Revolutionary advances in artificial intelligence (AI) in the past decade have brought transformative innovation across science and engineering disciplines. In the field of Arctic science, we have witnessed an increasing trend in the adoption of AI, especially deep learning, to support the analysis [...] Read more.
Revolutionary advances in artificial intelligence (AI) in the past decade have brought transformative innovation across science and engineering disciplines. In the field of Arctic science, we have witnessed an increasing trend in the adoption of AI, especially deep learning, to support the analysis of Arctic big data and facilitate new discoveries. In this paper, we provide a comprehensive review of the applications of deep learning in sea ice remote sensing domains, focusing on problems such as sea ice lead detection, thickness estimation, sea ice concentration and extent forecasting, motion detection, and sea ice type classification. In addition to discussing these applications, we also summarize technological advances that provide customized deep learning solutions, including new loss functions and learning strategies to better understand sea ice dynamics. To promote the growth of this exciting interdisciplinary field, we further explore several research areas where the Arctic sea ice community can benefit from cutting-edge AI technology. These areas include improving multimodal deep learning capabilities, enhancing model accuracy in measuring prediction uncertainty, better leveraging AI foundation models, and deepening integration with physics-based models. We hope that this paper can serve as a cornerstone in the progress of Arctic sea ice research using AI and inspire further advances in this field. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

18 pages, 8445 KiB  
Article
Efficient Motion Estimation for Remotely Controlled Vehicles: A Novel Algorithm Leveraging User Interaction
by Jakov Benjak, Daniel Hofman and Hrvoje Mlinarić
Appl. Sci. 2024, 14(16), 7294; https://doi.org/10.3390/app14167294 - 19 Aug 2024
Viewed by 1163
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a variety of applications, including entertainment, surveillance, and delivery. However, the real-time Motion Estimation (ME) of UAVs is challenging due to the high speed and unpredictable movements of these vehicles. This paper presents a [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly being used in a variety of applications, including entertainment, surveillance, and delivery. However, the real-time Motion Estimation (ME) of UAVs is challenging due to the high speed and unpredictable movements of these vehicles. This paper presents a novel algorithm for optimizing ME for Remotely Controlled Vehicles (RCVs), with a particular focus on UAVs. The proposed algorithm, called Motion Dynamics Input Search (MDIS), incorporates information from vehicle motion dynamics estimation to enhance the accuracy and efficiency of ME. The MDIS algorithm addresses the challenges associated with real-time ME in RCVs by leveraging user input to guide the search for the most similar blocks in the previous video frame. Through extensive experimentation and evaluation, this study demonstrates the effectiveness of the proposed algorithm in improving ME performance for RCVs. The findings highlight the potential impact of user interaction and motion dynamics estimation in shaping the future of ME algorithms for RCVs and similar applications. Full article
(This article belongs to the Special Issue Computer Vision, Robotics and Intelligent Systems)
Show Figures

Figure 1

25 pages, 5039 KiB  
Article
Test Platform for Developing New Optical Position Tracking Technology towards Improved Head Motion Correction in Magnetic Resonance Imaging
by Marina Silic, Fred Tam and Simon J. Graham
Sensors 2024, 24(12), 3737; https://doi.org/10.3390/s24123737 - 8 Jun 2024
Cited by 1 | Viewed by 1480
Abstract
Optical tracking of head pose via fiducial markers has been proven to enable effective correction of motion artifacts in the brain during magnetic resonance imaging but remains difficult to implement in the clinic due to lengthy calibration and set up times. Advances in [...] Read more.
Optical tracking of head pose via fiducial markers has been proven to enable effective correction of motion artifacts in the brain during magnetic resonance imaging but remains difficult to implement in the clinic due to lengthy calibration and set up times. Advances in deep learning for markerless head pose estimation have yet to be applied to this problem because of the sub-millimetre spatial resolution required for motion correction. In the present work, two optical tracking systems are described for the development and training of a neural network: one marker-based system (a testing platform for measuring ground truth head pose) with high tracking fidelity to act as the training labels, and one markerless deep-learning-based system using images of the markerless head as input to the network. The markerless system has the potential to overcome issues of marker occlusion, insufficient rigid attachment of the marker, lengthy calibration times, and unequal performance across degrees of freedom (DOF), all of which hamper the adoption of marker-based solutions in the clinic. Detail is provided on the development of a custom moiré-enhanced fiducial marker for use as ground truth and on the calibration procedure for both optical tracking systems. Additionally, the development of a synthetic head pose dataset is described for the proof of concept and initial pre-training of a simple convolutional neural network. Results indicate that the ground truth system has been sufficiently calibrated and can track head pose with an error of <1 mm and <1°. Tracking data of a healthy, adult participant are shown. Pre-training results show that the average root-mean-squared error across the 6 DOF is 0.13 and 0.36 (mm or degrees) on a head model included and excluded from the training dataset, respectively. Overall, this work indicates excellent feasibility of the deep-learning-based approach and will enable future work in training and testing on a real dataset in the MRI environment. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

Back to TopTop