Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = cubilin (CUBN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4445 KiB  
Article
Effects of High-Dose Vitamin D Supplementation on Placental Vitamin D Metabolism and Neonatal Vitamin D Status
by Anna Louise Vestergaard, Matilde Kanstrup Andersen, Helena Hørdum Andersen, Krista Agathe Bossow, Pinar Bor and Agnete Larsen
Nutrients 2024, 16(13), 2145; https://doi.org/10.3390/nu16132145 - 5 Jul 2024
Cited by 3 | Viewed by 3656
Abstract
Vitamin D (vitD) deficiency (25-hydroxy-vitamin D < 50 nmol/L) is common in pregnancy and associated with an increased risk of adverse pregnancy outcomes. High-dose vitD supplementation is suggested to improve pregnancy health, but there is limited knowledge about the effects on placental vitD [...] Read more.
Vitamin D (vitD) deficiency (25-hydroxy-vitamin D < 50 nmol/L) is common in pregnancy and associated with an increased risk of adverse pregnancy outcomes. High-dose vitD supplementation is suggested to improve pregnancy health, but there is limited knowledge about the effects on placental vitD transport and metabolism and the vitD status of newborns. Comparing the current standard maternal supplementation, 10 µg/day to a 90 µg vitD supplement, we investigated placental gene expression, maternal vitD transport and neonatal vitD status. Biological material was obtained from pregnant women randomized to 10 µg or 90 µg vitD supplements from week 11–16 onwards. Possible associations between maternal exposure, neonatal vitD status and placental expression of the vitD receptor (VDR), the transporters (Cubilin, CUBN and Megalin, LRP2) and the vitD-activating and -degrading enzymes (CYP24A1, CYP27B1) were investigated. Maternal vitD-binding protein (VDBP) was determined before and after supplementation. Overall, 51% of neonates in the 10 µg vitD group were vitD-deficient in contrast to 11% in the 90 µg group. High-dose vitD supplementation did not significantly affect VDBP or placental gene expression. However, the descriptive analyses indicate that maternal obesity may lead to the differential expression of CUBN, CYP24A1 and CYP27B1 and a changed VDBP response. High-dose vitD improves neonatal vitD status without affecting placental vitD regulation. Full article
(This article belongs to the Special Issue Vitamin D Deficiency and Maternal and Infant Health and Disease)
Show Figures

Figure 1

15 pages, 4300 KiB  
Article
Development of a Highly Differentiated Human Primary Proximal Tubule MPS Model (aProximate MPS Flow)
by Francesca Pisapia, Donovan O’Brien, Elena Tasinato, Kathryn L. Garner and Colin D. A. Brown
Bioengineering 2024, 11(1), 7; https://doi.org/10.3390/bioengineering11010007 - 21 Dec 2023
Cited by 3 | Viewed by 3102
Abstract
The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly [...] Read more.
The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly predictive of human outcome. To address this, we developed a physiologically relevant micro-physiological system (MPS) model of the human PT, the aProximate MPS Flow platform (Patent No: G001336.GB). In this model, primary human PT cells (hPTCs) are subjected to fluidic media flow and a shear stress of 0.01–0.2 Pa. We observe that these cells replicate the polarity of hPTCs and exhibit a higher expression of all the key transporters of SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A2 (OCT2), SLC47A1 (MATE1), SLC22A12 (URAT1), SLC2A9 (GLUT9), ABCB1 (MDR1), ABCC2 (MRP2), LRP2 (megalin), CUBN (cubilin), compared with cells grown under static conditions. Immunofluorescence microscopy confirmed an increase in OAT1, OAT3, and cilia protein expression. Increased sensitivity to nephrotoxic protein cisplatin was observed; creatinine and FITC-albumin uptake was significantly increased under fluidic shear stress conditions. Taken together, these data suggest that growing human PT cells under media flow significantly improves the phenotype and function of hPTC monolayers and has benefits to the utility and near-physiology of the model. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

17 pages, 1070 KiB  
Review
Vitamin D-Related Genes and Thyroid Cancer—A Systematic Review
by Adam Maciejewski and Katarzyna Lacka
Int. J. Mol. Sci. 2022, 23(21), 13661; https://doi.org/10.3390/ijms232113661 - 7 Nov 2022
Cited by 8 | Viewed by 4464
Abstract
Vitamin D, formerly known for its role in calcium-phosphorus homeostasis, was shown to exert a broad influence on immunity and on differentiation and proliferation processes in the last few years. In the field of endocrinology, there is proof of the potential role of [...] Read more.
Vitamin D, formerly known for its role in calcium-phosphorus homeostasis, was shown to exert a broad influence on immunity and on differentiation and proliferation processes in the last few years. In the field of endocrinology, there is proof of the potential role of vitamin D and vitamin D-related genes in the pathogenesis of thyroid cancer—the most prevalent endocrine malignancy. Therefore, the study aimed to systematically review the publications on the association between vitamin D-related gene variants (polymorphisms, mutations, etc.) and thyroid cancer. PubMed, EMBASE, Scopus, and Web of Science electronic databases were searched for relevant studies. A total of ten studies were found that met the inclusion criteria. Six vitamin D-related genes were analyzed (VDR—vitamin D receptor, CYP2R1—cytochrome P450 family 2 subfamily R member 1, CYP24A1—cytochrome P450 family 24 subfamily A member 1, CYP27B1—cytochrome P450 family 27 subfamily B member 1, DHCR7—7-dehydrocholesterol reductase and CUBN—cubilin). Moreover, a meta-analysis was conducted to summarize the data from the studies on VDR polymorphisms (rs2228570/FokI, rs1544410/BsmI, rs7975232/ApaI and rs731236/TaqI). Some associations between thyroid cancer risk (VDR, CYP24A1, DHCR7) or the clinical course of the disease (VDR) and vitamin D-related gene polymorphisms were described in the literature. However, these results seem inconclusive and need validation. A meta-analysis of the five studies of common VDR polymorphisms did not confirm their association with increased susceptibility to differentiated thyroid cancer. Further efforts are necessary to improve our understanding of thyroid cancer pathogenesis and implement targeted therapies for refractory cases. Full article
Show Figures

Figure 1

14 pages, 4260 KiB  
Article
Shotgun Proteomics of Isolated Urinary Extracellular Vesicles for Investigating Respiratory Impedance in Healthy Preschoolers
by Giuliana Ferrante, Rossana Rossi, Giovanna Cilluffo, Dario Di Silvestre, Andrea Brambilla, Antonella De Palma, Chiara Villa, Velia Malizia, Rosalia Gagliardo, Yvan Torrente, Giovanni Corsello, Giovanni Viegi, Pierluigi Mauri and Stefania La Grutta
Molecules 2021, 26(5), 1258; https://doi.org/10.3390/molecules26051258 - 26 Feb 2021
Cited by 2 | Viewed by 2925
Abstract
Urine proteomic applications in children suggested their potential in discriminating between healthy subjects from those with respiratory diseases. The aim of the current study was to combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in order to establish whether different [...] Read more.
Urine proteomic applications in children suggested their potential in discriminating between healthy subjects from those with respiratory diseases. The aim of the current study was to combine protein fractionation, by urinary extracellular vesicle isolation, and proteomics analysis in order to establish whether different patterns of respiratory impedance in healthy preschoolers can be characterized from a protein fingerprint. Twenty-one 3–5-yr-old healthy children, representative of 66 recruited subjects, were selected: 12 late preterm (LP) and 9 full-term (T) born. Children underwent measurement of respiratory impedance through Forced Oscillation Technique (FOT) and no significant differences between LP and T were found. Unbiased clustering, based on proteomic signatures, stratified three groups of children (A, B, C) with significantly different patterns of respiratory impedance, which was slightly worse in group A than in groups B and C. Six proteins (Tripeptidyl peptidase I (TPP1), Cubilin (CUBN), SerpinA4, SerpinF1, Thy-1 membrane glycoprotein (THY1) and Angiopoietin-related protein 2 (ANGPTL2)) were identified in order to type the membership of subjects to the three groups. The differential levels of the six proteins in groups A, B and C suggest that proteomic-based profiles of urinary fractionated exosomes could represent a link between respiratory impedance and underlying biological profiles in healthy preschool children. Full article
Show Figures

Figure 1

20 pages, 5704 KiB  
Article
Genetic Analyses in Dent Disease and Characterization of CLCN5 Mutations in Kidney Biopsies
by Lisa Gianesello, Monica Ceol, Loris Bertoldi, Liliana Terrin, Giovanna Priante, Luisa Murer, Licia Peruzzi, Mario Giordano, Fabio Paglialonga, Vincenzo Cantaluppi, Claudio Musetti, Giorgio Valle, Dorella Del Prete, Franca Anglani and Dent Disease Italian Network
Int. J. Mol. Sci. 2020, 21(2), 516; https://doi.org/10.3390/ijms21020516 - 14 Jan 2020
Cited by 16 | Viewed by 5437
Abstract
Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed [...] Read more.
Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed the PT expression of ClC-5 and of megalin and cubilin receptors in DD1 kidney biopsies. About 25% of DD cases lack mutations in either CLCN5 or OCRL genes (DD3), and no other disease genes have been discovered so far. Sanger sequencing was used for CLCN5 gene analysis in 158 unrelated males clinically suspected of having DD. The tubular expression of ClC-5, megalin, and cubilin was assessed by immunolabeling in 10 DD1 kidney biopsies. Whole exome sequencing (WES) was performed in eight DD3 patients. Twenty-three novel CLCN5 mutations were identified. ClC-5, megalin, and cubilin were significantly lower in DD1 than in control biopsies. The tubular expression of ClC-5 when detected was irrespective of the type of mutation. In four DD3 patients, WES revealed 12 potentially pathogenic variants in three novel genes (SLC17A1, SLC9A3, and PDZK1), and in three genes known to be associated with monogenic forms of renal proximal tubulopathies (SLC3A, LRP2, and CUBN). The supposed third Dent disease-causing gene was not discovered. Full article
Show Figures

Figure 1

5 pages, 202 KiB  
Case Report
Imerslund-Gräsbeck Syndrome in an Infant with a Novel Intronic Variant in the AMN Gene: A Case Report
by Alessandra Pacitto, Paolo Prontera, Gabriela Stangoni, Maurizio Stefanelli, Stefania Ceppi, Carla Cerri, Grazia Gurdo, Annalisa Mencarelli and Susanna Esposito
Int. J. Mol. Sci. 2019, 20(3), 527; https://doi.org/10.3390/ijms20030527 - 27 Jan 2019
Cited by 7 | Viewed by 3657
Abstract
Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal recessive disorder clinically characterized by megaloblastic anemia, benign mild proteinuria, and other nonspecific symptoms. Several pathogenetic variants in the amnionless (AMN) or cubilin (CUBN) genes have been described in IGS. We describe [...] Read more.
Imerslund-Gräsbeck syndrome (IGS) is a rare autosomal recessive disorder clinically characterized by megaloblastic anemia, benign mild proteinuria, and other nonspecific symptoms. Several pathogenetic variants in the amnionless (AMN) or cubilin (CUBN) genes have been described in IGS. We describe a case of IGS with urinary tract infection and mild but persistent proteinuria at onset in an 11-month-old female child. With the appearance of macrocytic anemia, aphthous stomatitis, and neurological signs, IGS was clinically suspected, and vitamin B12 parenteral therapy was started. Sequence analysis showed the presence of a novel intronic variant c.513+5G>A of AMN, never before described in the literature, that was in compound heterozygosity with the known pathogenetic variant c.1006+34_1007-31del. Analysis extension to the parents revealed the presence of variant c.1006+34_1007-31 in the father and c.513+5G>A in the mother. In the present case with IGS, the novel intronic variant of AMN was identified in “trans” with a known pathogenic variant (c.1006-31 del) and the new variant was interpreted to be pathogenetic since it was not found in the public database of polymorphisms and because it was predicted to alter a donor splicing site. Our case underlines the relevance in detecting certain subtle symptoms, such as mild but persistent proteinuria associated with megaloblastic anemia, to reach a correct diagnosis of a rare but treatable disorder. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Back to TopTop